Prior Authorization Review
Panel MCO Policy Submission

A separate copy of this form must accompany each policy submitted for review.
Policies submitted without this form will not be considered for review.

<table>
<thead>
<tr>
<th>Plan: Aetna Better Health</th>
<th>Submission Date: 09/04/2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Number: 0263</td>
<td>Effective Date:</td>
</tr>
<tr>
<td></td>
<td>Revision Date:</td>
</tr>
<tr>
<td>Policy Name: Gait Analysis and Electrodynogram</td>
<td></td>
</tr>
</tbody>
</table>

Type of Submission – Check all that apply:
- [] New Policy
- [x] Revised Policy*
- [] Annual Review – No Revisions

*All revisions to the policy must be highlighted using track changes throughout the document. Please provide any clarifying information for the policy below:

CPB 263 Gait Analysis and Electrodynogram

Clinical content was last revised on 05/25/2012. Additional non-clinical updates were made by Corporate since the last PARP submission, as documented below.

Revision and Update History since last PARP submission:
06/21/2018 - This CPB has been updated with additional background information and references.
03/14/2019 – Tentative next scheduled review date by Corporate

Name of Authorized Individual (Please type or print):
Dr. Bernard Lewin, M.D.
Signature of Authorized Individual:

www.aetnabetterhealth.com/pennsylvania
Updated 09/04/2018
Gait Analysis and Electrodynogram

Number: 0263

Please see amendment for Pennsylvania Medicaid at the end of this CPB.

Policy

Aetna considers gait analysis (also known as motion analysis studies), dynamic electromyography or the use of an electrodynogram experimental and investigational for conditions that result in gait deviations and for all other indications because there is insufficient peer-reviewed medical literature demonstrating the clinical value of these technologies.

See also CPB 0294 - Pedobarograph (0294.html).

Background

Also known as motion analysis, gait analysis is a systematic evaluation of the dynamics of gait (walking and walking patterns). The standard method of gait analysis is by observational assessment (without the use of any computers or computer programs); focuses on motion of the hips, knees, ankles and feet throughout the gait.
Several investigators have advocated the use of gait analysis for planning surgery and therapy treatments for children with cerebral palsy (CP). Although their rationale appears sound, it has not been supported by clinical outcome studies demonstrating its efficacy beyond visual analysis of gait abnormalities routinely performed by clinicians.

An assessment conducted by the BlueCross BlueShield Association Technology Evaluation Center (2002) concluded that “[t]he evidence does not permit conclusions on whether the use of gait analysis for evaluation of children with cerebral palsy improves health outcomes or is as beneficial as established alternatives.” The assessment noted that several studies have reported that treatment decisions were affected by the results of gait analysis; these studies, however, do not demonstrate whether clinical outcomes were improved by basing treatment decisions on gait analysis. The assessment identified only 1 study that directly addressed the question of whether gait analysis improves patient outcomes, compared with standard clinical assessment. This retrospective study (Lee et al, 1992) reported on the outcomes of 23 children with CP, 15 of whom were treated according to the recommendation of gait analysis data plus clinical assessment, and 8 of whom were treated according to clinical assessment alone. Of the 7 children who were classified as not improved, 5 had been treated according to clinical assessment alone. The TEC assessment noted several problems with this study, including small numbers of study subjects, lack of consideration of confounding factors, and vague definition of outcomes. Most important, however, it was not reported whether children analyzed as treated according to gait analysis data underwent treatments discordant with the recommendations of clinical assessment alone or in agreement with clinical assessment alone (BCBSA, 2002). The TEC assessment notes that, if it is the latter, then the study is severely flawed and can not be used to compare clinical assessment and gait analysis. The TEC assessment concluded that, "[i]n the absence of any well-designed
observational or randomized controlled trials, no conclusion can be drawn about whether gait analysis in the clinical evaluation and treatment of cerebral palsy has an effect upon health outcomes."

Gait analysis studies that have been published since the TEC assessment was released suffer from similar limitations as previous studies, in that they have not included outcomes of internal comparison groups of children with CP who were managed based on clinical assessment alone. Comparisons of outcomes between studies (i.e., comparisons of outcomes of studies where gait analysis was used with studies where gait analysis was not used) is problematic due to confounding factors that may account for differences in outcomes (such as differences in surgical technique and experience, characteristics of study subjects, methods of assessing outcomes, etc.).

Several studies have reported that treatment decisions are affected by the results of gait analysis (Lofterod et al, 2007; Kay et al, 2000; Molenaers et al, 2006; Wren et al, 2005); these studies, however, do not demonstrate whether clinical outcomes are improved by basing treatment decisions on gait analysis. Similarly, studies examining correlations (or the lack thereof) between clinical measurements and quantitative gait analysis (Desloovere et al, 2006; Kawamura et al, 2006) do not prove that the quantitative measurements provided by gait analysis alter the management of patients such that clinical outcomes are improved.

One small retrospective study evaluated the impact of computerized gait analysis on clinical outcomes (Chang et al, 2006). The study included 10 patients with CP and 10 age- and sex-matched controls. Children in the control group chose not to follow the gait analysis recommendation and chose a non-surgical treatment approach, whereas children in the gait analysis group followed a physician's recommendation for gait analysis. The results documented that 74% of patients in the
control group had no change or a negative outcome, 26% in the control group had a positive outcome. Of the gait analysis group 61% had no change or a negative outcome, while 44% of this group had a positive outcome. While the results of this study suggest that gait analysis recommendations may improve clinical outcomes, the control group did not undergo surgery, whereas those in the gait analysis group did. Therefore, it is not possible to determine the relative contributions of gait analysis and surgery.

A study by Wren et al (2009) is a retrospective analysis of numbers of procedures and costs in children whose surgery was planned by gait analysis and those whose surgery was performed without gait analysis. The investigators found no significant differences overall in total numbers of procedures and costs between the 2 groups. Limitations of the study include its retrospective nature and lack of randomized assignment. Since the study was retrospective, the authors were unable to assess other outcomes such as function, participation, and quality of life, which are important outcomes that need to be examined in future prospective studies.

Dobson and colleagues (2007) evaluated the validity of existing classifications of gait deviations in children with CP. The authors noted that numerous efforts have been made to develop classification systems for gait in CP to assist in diagnosis, clinical decision-making and communication. The authors examined the internal and external validity of gait classifications in 18 studies, including their sampling methods, content validity, construct validity, reliability and clinical utility. The authors found that half of the studies used qualitative pattern recognition to construct the gait classification and the remainder used statistical techniques such as cluster analysis. Few adequately defined their samples or sampling methods. The authors found that most classifications were constructed using only sagittal plane gait data, and that many did not provide adequate guidelines or evidence of reliability and validity of the classification system. No single classification
addressed the full magnitude or range of gait deviations in children with CP. The authors concluded that, although gait classification in CP can be useful in clinical and research settings, the methodological limitations of many classifications restrict their clinical and research applicability.

Lofterod and Terjesen (2008) evaluated the outcome of orthopedic surgery in ambulant children with CP, when the orthopedic surgeons followed the recommendations from pre-operative 3-dimensional gait analysis. A total of 55 children (mean age of 10 years and 11 months) were clinically evaluated by orthopedic surgeons who proposed a surgical treatment plan. After gait analysis and subsequent surgery, 3 groups were defined. In group A, there was agreement between clinical proposals, gait analysis recommendations, and subsequent surgery in 128 specific surgical procedures. In group B, 54 procedures were performed based on gait analysis, although these procedures had not been proposed at the clinical examination. In group C, 55 surgical procedures that had been proposed after clinical evaluation were not performed because of the gait analysis recommendations. The children underwent follow-up gait analysis 1 to 2 years after the initial analysis. The kinematic results were satisfactory, with improvement in most of the gait parameters in children who had undergone surgery and no significant deterioration in those who were not operated. In group A, there were significant improvements in maximum hip extension in stance, minimum knee flexion in stance, timing of maximum knee flexion in swing and knee range of motion (ROM), maximum ankle dorsiflexion in stance, and mean femur rotation in stance. In group B, there were significant improvements in maximum hip extension in stance, minimum knee flexion in stance, and knee ROM. The authors concluded that gait analysis was useful in confirming clinical indications for surgery, in defining indications for surgery that had not been clinically proposed, and for excluding or delaying surgery that was clinically proposed. The findings of this study need to be validated by well-designed studies.
An additional important factor that limits the ability to interpret the evidence on gait analysis is the fact that the technical parameters, diagnostic variables, and outcome measures vary among studies. Some of the differences included the number and placement of video cameras, reflective markers, and force plates; number and type of gait parameters that are measured; and variations in the use of EMG data. Study participants are heterogeneous with regard to the type of gait disorder and clinical history. Studies of the impact of computerized gait analysis on patient management evaluated different types of surgical procedures, and varied in the number and type of muscles that were operated on. In addition, few studies include follow-up data.

Narayanan (2007) reviewed the scientific literature to describe the role of gait analysis in the orthopedic management of ambulatory children with CP and examined the current best evidence to support these roles. The author stated that although gait analysis has been shown to alter decision making, there is little evidence that the decisions based on gait analysis lead to better outcomes. Consequently, clinical gait analysis remains controversial, with wide variation in the rates of utilization of gait analysis in the management of children with ambulatory CP. The author stated that the time is ripe for clinical trials and cohort studies to provide the evidence to establish the appropriate utilization of this technology.

Randomized controlled clinical trials to compare outcomes of surgery planned with and without gait analysis are currently ongoing. One of these studies, sponsored by the Federal Agency for Healthcare Research and Quality (AHRQ) and conducted at 2 children’s hospitals in Los Angeles, has been completed, and its results (Wren, et al., 2012) are reported below. The AHRQ explained why this study is needed: “Gait analysis testing has been used to assist orthopedic surgeons in developing treatment plans for children with gait abnormalities, particularly children with cerebral palsy. Previous studies have shown that gait analysis testing
significantly impacts surgical decision-making for these patients. However, no controlled studies have been done to determine whether gait analysis and the subsequent changes in surgical decision-making affect clinical outcomes. Consequently, the use of gait analysis in clinical practice remains controversial. The purpose of this study is to conduct a randomized controlled trial to assess the effects of preoperative gait analysis on surgical outcomes in ambulatory children with cerebral palsy" (AHRQ, 2005).

Another randomized controlled clinical study of gait analysis, funded by the Canadian government, is being conducted at 2 children's hospitals in Toronto. The study description explains the need for this trial: "Pre-operative planning is based on the physical examination and visual (observational) analysis of the child's gait. In some centres, patients undergo additional gait analysis in a motion laboratory. While gait laboratory analysis is accepted as an important research tool, there is controversy about its clinical utility in decision making for the surgical management of this population. To date, no clinical trials have been undertaken to answer this question, and the appropriate clinical utilization of this technology is yet to be established. The consequence of this uncertainty is that ambulatory children with cerebral palsy are either being deprived of a useful assessment tool in some centres, or alternatively they are being subjected to an unnecessary evaluation that is both expensive and time consuming in other centres" (Hospital for Sick Children, 2007). Both of these randomized controlled clinical trials will examine the impact of gait analysis on a number of parameters, the most important of which relate to clinical outcomes (i.e., improvements in function and quality of life), as opposed to intermediate outcomes.

Maquet and colleagues (2010) evaluated gait characteristics during simple and dual task in patients with mild cognitive impairment (MCI) and compared them with those of healthy elderly subjects and mild Alzheimer's disease (AD) patients. These researchers proposed a gait analysis to appreciate
walking (simple task and dual task) in 14 MCI, 14 controls and 6 AD subjects who walked at their preferred speed. A 20-second period of stabilized walking was used to calculate stride frequency, stride length, symmetry and regularity. Speed walking was measured by electrical photocells. Variables measured during simple and dual tasks showed an alteration of motor function as well in mild AD patients as in MCI patients. The authors concluded that at the end of this preliminary study, they defined a specific gait pattern for each cognitive profile. They stated that further researches appear necessary to enlarge the study cohort. Furthermore, in a review on clinical gait analysis, Chapin (2010) stated that additional research documenting the value of incorporating clinical gait analysis in the treatment planning process may ultimately change the payment patterns of insurers.

Ornetti and colleagues (2010) stated that kinematic gait analysis consisting of measuring gait parameters (e.g., dynamic joint angles, gait speed, and stride length) is a potential outcome measure in osteoarthritis (OA). These investigators evaluated the psychometric properties of gait analysis. A systematic literature search was performed in PubMed and the Cochrane database until January 2008 by selecting manuscripts assessing any psychometric property of gait analysis in knee or hip OA. These researchers assessed feasibility (access, cost, and time); reliability; discriminant capacity by differences between OA and non-OA patients; construct validity by correlation between gait analysis and OA symptoms: pain or functional disability (Lequesne/WOMAC); and responsiveness by improvement of gait analysis after treatment of OA using effect size. Among the 252 articles identified, the final analysis included 30 reports (i.e., 781 knee OA patients and 343 hip OA patients). Gait analysis presents various feasibility issues and there was limited evidence regarding reliability (3 studies; 67 patients). Discriminant capacity showed significant reduction of gait speed, stride length and knee flexion in OA patients compared to healthy subjects. Few data were available concerning construct
validity (3 studies; 79 patients). Responsiveness of gait speed was moderate to large with effect size ranging respectively from 0.33 to 0.89 for total knee replacement, and from 0.50 to 1.41 for total hip replacement. The authors concluded that available data concerning validity and reliability of kinematic gait analysis are insufficient to date to consider kinematic parameters as valuable outcome measures in OA. They stated that further studies evaluating a large number of patients are needed.

Calhoun et al (2011) compared kinematic and kinetic gait patterns in children with autism versus age-matched controls. A total of 12 children with autism and 22 age-matched controls participated in the study. An 8-camera motion capture system and 4 force plates were used to compute joint angles and joint kinetics during walking. Parametric analyses and principal component analyses were applied to kinematic and kinetic waveform variables from the autism and control groups. Group differences in parameterization values and principal component scores were tested using 1-way ANOVAs and Kruskal-Wallis tests. Significant differences between the autism and control group were found for cadence, and peak hip and ankle kinematics and kinetics. Significant differences were found for 3 of the principal component scores: (i) sagittal ankle moment principal component one, (ii) sagittal ankle angle principal component one, and (iii) sagittal hip moment principal component two. Results suggest that children with autism demonstrate reduced plantar-flexor moments and increased dorsiflexion angles, which may be associated with hypotonia. Decreased hip extensor moments were found for the autism group compared to the control group, however, the clinical significance of this result is unclear. This study has identified several gait variables that were significantly different between autism and control group walkers. This is the first study to provide a comprehensive analysis of gait patterns in children with autism. The role of
gait analysis, if any, in the management of children with autism has yet to be established.

The American Association of Electrodiagnostic Medicine/American Academy of Physical Medicine and Rehabilitation's technology review on "Dynamic electromyography in gait and motion analysis" (1999) concluded that "its utility in pre-operative planning has not been proven in well-designed, large, multi-center studies. There remains many legitimate differences of opinion as to the relative benefits of surface versus fine-wire techniques that future studies will need to resolve. Also in doubt is the best way of determining onset of electrical activity and other technical variables. Dynamic EMG, as part of comprehensive motion analysis, has found applications in the optimization of athletic performance. The subjects in these studies are not patients in the classic sense and did not necessarily carry any type of medical diagnosis".

A randomized controlled clinical trial (Wren et al, 2013) found no significant difference in primary outcome measures and most secondary outcome measures with use of gait analysis in cerebral palsy surgery. This study examined the impact of gait analysis on surgical outcomes in 156 ambulatory children with CP through a randomized controlled trial. Patients underwent gait analysis and were randomized to 2 groups: (i) Gait Report group (n = 83), where the referring surgeon received the patient's gait analysis report, and (ii) Control group (n = 73), where the surgeon did not receive the gait report. Outcomes were assessed pre- and 1.3 + 0.5 years post-operatively. An intent-to-treat analysis compared outcomes between the 2 groups. The primary outcome measures were the walking scale of the Gillette Functional Assessment Questionnaire (FAQ), the Gait Deviation Index (GDI), and the oxygen cost of walking (O2 cost). Secondary outcome measures included the gross motor function measure (GMFM-66) and health-related quality of life questionnaires (Child
Health Questionnaire (CHQ), Pediatric Outcomes Data Collection Instrument (PODCI), and Pediatric Evaluation and Disability Inventory (PEDI). The outcomes that differed significantly between groups were change in health component of the CHQ, which was rated as much better for 56% (46/82) of children in the Gait Report group compared with 38% (28/73) in the Control group (p = 0.04), and the upper extremity physical function component of the PODCI. There were no significant differences in outcomes between the Gait Report group and the Control group in the primary outcome measures: the FAQ, the GDI, and O2 cost. There were also no significant differences in most secondary outcomes, including the GMFM-66, all four components of the PEDI, and components of the CHQ other than change in health (i.e., global health, physical functioning, role/social limitations - physical, pain/discomfort, self esteem, general health perception, parental impact - emotional, and parental impact - time), and components of the PODCI other than upper extremity physical function (i.e., sports/physical function, transfer/basic mobility, pain/comfort, and global functioning). The authors posited that one potential reason for the lack of difference between the Gait Report group and the Control group for most measures was because surgeons who received gait reports followed the report recommendations less than half (42%) of the time.

In a cohort study, Chow and colleagues (2012) examined the velocity-dependent change in medial gastrocnemius (MG) activity during the stance phase of gait in patients with moderate-to-severe resting hypertonia after stroke or traumatic brain injury (TBI). Convenience sample of patients with chronic TBI and stroke (n = 11 each), and age- and sex-matched healthy controls (n = 22). Main outcome measures included frequency and gain (steepness) of positive (greater than 0) and significant positive (greater than 0 and goodness of fit p ≤ 0.05) electromyogram-lengthening velocity (EMG-LV) linear regression slope in MG during the stance phase of gait. Positive and significant positive slopes were found significantly
more often on the more affected (MA) than less affected (LA) side in patients with TBI but not stroke. Both the frequencies of positive and significant positive slopes on the MA side in patients with TBI were also significantly higher than in controls. However, neither the gain of positive nor significant positive EMG-LV slope was different between the MA and LA sides or in comparison with controls. Positive slope parameters were not related to Ashworth score on the MA side. The authors concluded that the frequency and gain of positive EMG-lengthening slope did not effectively differentiate patients from controls, nor were they related to the resting muscle hypertonia. Motor output during MG lengthening in the stance phase of gait is apparently not exaggerated or related to resting hypertonia in patients with chronic TBI and stroke. Thus, changes in gait during stance cannot be ascribed to increased stretch reflex activity in MG muscle after acquired brain injury.

An evidence review of management of children with cerebral palsy (Narayanan, 2012) stated that there is good evidence that gait analysis does alter surgical decision-making at least some of the time. However, "there remain concerns about the reliability (reproducibility) of these decisions or whether implementing these recommendations would result in different, let alone better outcomes" (Narayanan, 2012). The review reported on one study of gait analysis that found that, when the same gait analysis data were examined by gait analysis experts from 6 different institutions, there was only slight to moderate agreement in the list of problems generated by the experts (citing Skaggs, et al., 2000). Agreement about specific surgical recommendations was similarly poor. The review explained that, although gait analysis data are themselves objective, there is subjectivity in interpretation even among experts, with diagnoses and treatment recommendations varying significantly by surgeon or institution. The evidence review stated that, in another study (citing Noonan, et al., 2003), there was variability in the kinematic data generated in 4 different motion laboratories that tested the same 11
patients. Although the clinical significance of some of this variability has been challenged, the treatment recommendations generated from these data were different across the 4 centers for 9 of the 11 patients. The author of the review stated: "Variability in the interpretation of gait data reflects the prevailing uncertainty (or controversies) about the causes and/or significance of specific findings and will only be resolved with ongoing clinical research and experience using gait analysis. Similarly, variability in treatment recommendations based on the same gait data also reflects differences of opinion about best strategies to deal with specific problems, which in turn can only be definitively resolved with comparative clinical trials or observational studies" (Narayanan, 2012). The review author concluded that "as long as such significant variability exists, the recommendation that gait analysis is essential for all preoperative decision-making before multilevel orthopaedic surgery in clinical (as opposed to research) practice is currently not supported by the literature" (Narayanan, 2012).

An UpToDate review on “Gait disorders of elderly patients” (Ronthal, 2013) states that “It becomes evident that the control of walking is a highly complex and integrated activity. With multiple control points, multiple areas of vulnerability to disruption of normal gait are present. Knowledge of the basic physiology is a good starting point in gait disorder analysis. More sophisticated analysis of gait by posturography and studies of gait variability are largely research tools, but can help with rehabilitation”.

Zugner and associates (2017) simultaneously examined 14 patients with optical tracking system (OTS) and dynamic radiostereometric analysis (RSA) to evaluate the accuracy of both skin- and a cluster-marker models. The mean differences between the OTS and RSA system in hip flexion, abduction, and rotation varied up to 9.5° for the skin-marker and up to 11.3° for the cluster-marker models, respectively. Both models tended to under-estimate the amount of flexion and abduction,
but a significant systematic difference between the marker and RSA evaluations could only be established for recordings of hip abduction using cluster markers (p = 0.04). The intra-class correlation coefficient (ICC) was 0.7 or higher during flexion for both models and during abduction using skin markers, but decreased to 0.5 to 0.6 when abduction motion was studied with cluster markers. During active hip rotation, the 2 marker models tended to deviate from the RSA recordings in different ways with poor correlations at the end of the motion (ICC less than or equal to 0.4). During active hip motions soft tissue displacements occasionally induced considerable differences when compared to skeletal motions. The best correlation between RSA recordings and the skin- and cluster-marker model was found for studies of hip flexion and abduction with the skin-marker model. The authors concluded that studies of hip abduction with use of cluster markers were associated with a constant under-estimation of the motion; and recordings of skeletal motions with use of skin or cluster markers during hip rotation were associated with high mean errors amounting up to about 10° at certain positions.

Rogan and colleagues (2017) evaluated the concurrent validity of the RehaWatch system using the GAITRite system as a criterion reference for gait assessment in the long-term care (LTC) elderly. In this study, a total of 23 elderly participants (mean age of 90.9 ± 8.4 years) performed 4 walking trials at normal and fast walking speed during single-task and dual-task walking. Data for both systems were collected simultaneously for each trial. Concurrent validity was assessed through limits of agreement (LoA) methodology using Bland-Altman plots. No systematic bias could be determined. Mean biases for step duration, velocity and cadence were above the pre-specified ±7 % value from zero lines for normal walking during single-task and dual-task walking. The LoA had a wide range between -21 % and 25 %. Only cadence showed small LoA for normal walking speed during single- (-8.4 % to 7.7 %) and dual-tasking (-4.1 % to 3 %). Heterogeneous bias was determined for step duration
during fast walking during dual-task and for velocity during fast walking during single-task and dual-task. Heteroscedasticity was shown for step length during normal walking under the dual-task condition and fast walking during single-task and dual task activities. The authors concluded that no gait parameters were interchangeably usable between the 2 systems for normal walking during single-task and dual-task activities.

Mutoh and colleagues (2018) obtained data of gait parameters on predicting long-term outcome of hippotherapy. In 20 participants (4 to 19 years; GMFCS levels I to III) with cerebral palsy (CP), gait and balance abilities were examined after 10-m walking test using a portable motion recorder. Hippotherapy was associated with increased Gross Motor Function Measure (GMFM)-66 at 1 year from the baseline (p < 0.001). Hippotherapy increased stride length, walking speed, and mean acceleration and decreased horizontal/vertical displacement ratio over time (p < 0.05). Stride length and mean acceleration at 6 weeks predicted the elevation of GMFM-66 score. The authors concluded that these data suggested that 1-year outcome of hippotherapy on motor and balance functions can be assessed from the early phase by serial monitoring of the gait parameters. The drawbacks of this study included its single-arm design with relatively small number of subjects (n = 20), which meant that the results may not be extrapolated to all types and severity levels of CP. In this study, no matched-control or other training modalities (e.g., horseback riding simulator and whole-body vibration) was provided because parents of all potential participants were adamant that they wanted their sons/daughters to undergo the actual intervention as a result of the likely benefit of hippotherapy. These issues need to be overcome in future studies.

Petis and associates (2018) examined the impact of surgical approach for total hip arthroplasty (THA) on quantitative gait analysis. Patients undergoing THA for primary osteoarthritis of
the hip were assigned to 1 of 3 surgical approaches: anterior, posterior and lateral. Standardized implants were used at the time of surgery. Three-dimensional gait analysis was performed pre-operatively and at 6 and 12 weeks post-operatively. At each time-point, these researchers compared temporal parameters, kinematics and kinetics. They included 30 patients in their analysis (10 anterior, 10 posterior, and 10 lateral). The groups were similar with respect to age (p = 0.27), body mass index (BMI; p = 0.16), and Charlson Comorbidity Index score (p = 0.66). Temporal parameters were similar among the groups at all time-points. The lateral cohort had higher pelvic tilt during stance on the affected leg than the anterior cohort at 6 weeks (p = 0.041). Affected leg ipsilateral trunk lean during stance was higher in the lateral group than in the other cohorts at 6 weeks (p = 0.008) and 12 weeks (p = 0.040). The anterior and posterior groups showed increased external rotation at 6 weeks (p = 0.003) and 12 weeks (p = 0.012) compared with the lateral group. The authors concluded that temporal gait parameters were similar following THA for all approaches. Moreover, they stated that the impact of gait anomalies on the long-term mechanical durability of implant fixation remains unknown; future studies, such as corroborating biomechanical changes with soft tissue changes seen on cross-sectional imaging with long-term follow-up, would provide insight into how healed or unhealed tissue may explain gait aberrancies.

This study had several drawbacks. The lack of true randomization may have introduced selection bias on behalf of the surgeon and expectation bias on behalf of the patient. Studies have shown that patients believe minimizing muscle damage is important after major reconstructive surgery, such as THA. Thus, knowing that an approach potentially is “muscle-sparing” may psychologically prime an individual to be more motivated to achieve earlier mobilization and hasten progress with rehabilitation. It is important to consider this confounding factor across all comparative studies that examine minimally invasive or muscle-sparing, techniques.
The addition of an age-, sex- and BMI-matched control group would provide useful information to understanding how well each surgical approach restores gait mechanics. In addition, randomization may have reduced pre-operative kinematic and kinetic differences between the cohorts, although these variables were likely more a function of individual differences than sample selection. These investigators did not report changes in leg length and femoral offset following THA, which could affect gait mechanics by changing the length of the muscles around the hip joint. These findings were limited to a short-term follow-up of 12 weeks, which may be too short to observe optimal restoration of gait mechanics in all groups. Finally, the single-center study design limited the generalizability of the data, as only 3 surgeons performed the procedures.

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT codes not covered for indications listed in the CPB:</td>
<td></td>
</tr>
<tr>
<td>96000</td>
<td>Comprehensive computer-based motion analysis by video-taping and 3-D kinematics</td>
</tr>
<tr>
<td>96001</td>
<td>with dynamic plantar pressure measurements during walking</td>
</tr>
<tr>
<td>96002</td>
<td>Dynamic surface electromyography, during walking or other functional activities, 1 - 12 muscles</td>
</tr>
<tr>
<td>96003</td>
<td>Dynamic fine wire electromyography, during walking or other functional activities, 1 muscle</td>
</tr>
<tr>
<td>Code</td>
<td>Code Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>96004</td>
<td>Review and interpretation by physician or other qualified health care professional of comprehensive computer-based motion analysis, dynamic plantar pressure measurements, dynamic surface electromyography during walking or other functional activities, and dynamic fine wire electromyography, with written report</td>
</tr>
</tbody>
</table>

ICD-10 codes not covered for indications listed in the CPB (not all-inclusive):

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G80.0</td>
<td>Cerebral palsy</td>
</tr>
<tr>
<td>G80.9</td>
<td></td>
</tr>
<tr>
<td>G82.20</td>
<td>Paraplegia, quadriplegia and other specified paralytic syndromes</td>
</tr>
<tr>
<td>G83.9</td>
<td></td>
</tr>
<tr>
<td>R26.0</td>
<td>Abnormality of gait and mobility</td>
</tr>
<tr>
<td>R26.9</td>
<td></td>
</tr>
<tr>
<td>R27.0</td>
<td>Other lack of coordination</td>
</tr>
<tr>
<td>R27.9</td>
<td></td>
</tr>
</tbody>
</table>

The above policy is based on the following references:

3. Rose SA, DeLuca PA, Davis RB 3rd, et al. Kinematic and kinetic evaluation of the ankle after lengthening of the

32. BlueCross BlueShield Association (BCBSA), Technology Evaluation Center (TEC). Gait analysis for pediatric cerebral palsy. TEC Assessment Program. Chicago, IL: BCBSA; April 2002;16(19).

56. Filho MC, Yoshida R, Carvalho WD, et al. Are the recommendations from three-dimensional gait analysis associated with better postoperative

89. Ronthal M. Gait disorders of elderly patients. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed December 2013.

different gait analysis services. Gait Posture. 2014;40
(2):286-290.

functional outcome after femoral derotation
osteotomy according to gait analysis in cerebral palsy.

contribution to problems identification and surgical
planning in CP patients: An agreement study. Eur J

97. Lamberts RP, Burger M, du Toit J, Langerak NG. A
systematic review of the effects of single-event
multilevel surgery on gait parameters in children with
(10):e0164686.

98. Chen S, Lach J, Lo B, Yang GZ. Toward pervasive gait
analysis with wearable sensors: A systematic review.

gait analysis with dynamic radiostereometric analysis
(RSA) in patients operated with total hip arthroplasty. J

100. Rogan S, de Bie R, Douwe de Bruin E. Sensor-based
foot-mounted wearable system and pressure sensitive
gait analysis: Agreement in frail elderly people in long-

gait analyses on long-term outcome of hippotherapy
in children and adolescents with cerebral palsy.

anterior, posterior and lateral approach: Gait analysis
AETNA BETTER HEALTH® OF PENNSYLVANIA

Amendment to
Aetna Clinical Policy Bulletin Number:
0263 Gait Analysis and Electrodynogram

Gait analysis for planning surgery and therapy treatments for children with cerebral palsy will be considered on a case by case basis for the Pennsylvania Medical Assistance plan.

www.aetnabetterhealth.com/pennsylvania
Updated 09/04/2018