Clinical Policy Bulletin: Wound Care
Revised February 2015

Number: 0244
(Replaces CPB 331)

Policy

I. Aetna considers the following products for wound care medically necessary according to the criteria indicat

A. Apligraf (graftskin)

Aetna considers a culture-derived human skin equivalent (HSE) called Apligraf (graftskin) medically necessary for any of the following indications:

1. For use with standard diabetic foot ulcer care for the treatment of full-thickness neuropathic diabetic foot ulcers of greater than 3-weeks duration that have not adequately responded to conventional therapy and which extend through the dermis but without tendon, muscle, capsule or bone exposure.

2. In conjunction with standard therapy to promote effective wound healing of chronic, non-infectious partial and full-thickness venous stasis ulcers that have failed conservative measures of great-northern duration using regular dressing changes and standard therapeutic compression.

Aetna considers Apligraft experimental and investigational for all other indications (e.g., traumatic wounds) because its effectiveness for indications other than the ones listed above has not been established.

B. Dermagraft

Aetna considers Dermagraft human fibroblast-derived dermal substitute medically necessary for use in treatment of full-thickness diabetic foot ulcers greater than 6-week duration that extend through the dermis but without tendon, muscle, joint capsule or bone exposure, and (ii) in the treatment of wounds related to dystrophic epidermolysis bullosa. Note: Consistent with the Food and Drug Administration (FDA)-approved labeling of Dermagraft, the product should be used in conjunction with standard wound care regimen addition, the product is not considered medically necessary in persons with an inadequate blood supply involved foot.

Aetna considers Dermagraft experimental and investigational for all other indications because its effectiveness for indications other than the ones listed above has not been established. Dermagraft is contraindicated and has no proven value in infected ulcers and ulcers with sinus tracts.
C. **Systemic Hyperbaric Oxygen Therapy (HBOT)**

Aetna considers systemic hyperbaric oxygen therapy (HBOT) medically necessary as an adjunctive for treating non-healing, infected, deep lower extremity wounds in members with diabetes. See CPB Hyperbaric Oxygen Therapy (HBOT).

D. **TransCyte**

Aetna considers TransCyte (allogeneic human dermal fibroblasts), a biosynthetic dressing, medically necessary for the temporary wound covering for surgically excised full-thickness and deep partial-thickness thermal burn wounds in persons who require such a covering before autograft placement; and for the treatment of mid-dermal to indeterminate depth burn wounds that typically require debridement and to be expected to heal without autografting.

Aetna considers TransCyte experimental and investigational for all other indications because its effectiveness for indications other than the ones listed above has not been established.

E. **Orcel**

Aetna considers Orcel (bilayered cellular matrix) medically necessary for healing donor site wounds in victims, and for use in persons with dystrophic epidermolysis bullosa undergoing hand reconstruction to close and heal wounds created by the surgery, including those at donor sites.

Aetna considers Orcel experimental and investigational for all other indications because its effectiveness for indications other than the ones listed above has not been established.

F. **Biobrane Biosynthetic Dressing**

Aetna considers Biobrane biosynthetic dressing medically necessary for temporary covering of a superficial partial-thickness burn wound.

Aetna considers Biobrane biosynthetic dressing experimental and investigational for all other indications because its effectiveness for indications other than the one listed above has not been established.

G. **Integra Dermal Regeneration Template and Integra Bilayer Wound Matrix**

Aetna considers Integra Dermal Regeneration Template, Integra Bilayer Matrix Wound Dressing, an Meshed Bilayer Wound Matrix (collagen-glycosaminoglycan copolymers) medically necessary for the treatment of individuals with severe burns where there is a limited amount of their own skin to use for autografts or they are too ill to have more wound sites created.

Aetna considers Integra Dermal Regeneration Template and Integra Bilayer Wound Matrix experimental investigational for all other indications because its effectiveness for indications other than the ones listed above has not been established.

H. **Alloderm**

Aetna considers Alloderm and Alloderm-RTU acellular dermal tissue matrix medically necessary for reconstructive surgery; see CPB 0185 - Breast Reconstruction Surgery.

Aetna considers the use of Alloderm experimental and investigational for all other indications (e.g., hand repair, reduction of incidence of Frey's syndrome following parotidectomy, and for use in reconstructive upper extremity) because its effectiveness for indications other than the one listed above has not been established.
I. **Artiss**

Aetna considers Artiss fibrin sealant medically necessary for the treatment of individuals with severe...

Aetna considers Artiss fibrin sealant experimental and investigational for all other indications because effectiveness for indications other than the one listed above has not been established.

J. **Oasis Wound Matrix**

Aetna considers Oasis Wound Matrix medically necessary for treatment of difficult-to-heal chronic venous partial and full-thickness ulcers of the lower extremity that have failed standard wound therapy at least 4-weeks duration.

Aetna considers Oasis Wound Matrix experimental and investigational for all other indications because effectiveness for indications other than the ones listed above has not been established.

K. **Graftjacket Regenerative Tissue Matrix**

Aetna considers Graftjacket Regenerative Tissue Matrix medically necessary for treatment of full-thickness diabetic foot ulcers greater than 3-week duration that extend through the dermis, but without tendon, joint capsule or bone exposure.

Aetna considers Graftjacket Regenerative Tissue Matrix experimental and investigational for all other indications because its effectiveness for indications other than the one listed above has not been established.

L. **Epicel**

Aetna considers Epicel cultured epidermal autograft medically necessary for members who have deep dermal or full thickness burns comprising a total body surface area of greater than or equal to 30%.

Note: Epicel may be used in conjunction with split-thickness autografts, or alone in persons for whom thickness autografts may not be an option due to the severity and extent of their burns.

Aetna considers Epicel cultured epidermal autograft experimental and investigational for all other indications because its effectiveness for indications other than the one listed above has not been established.

II. Aetna considers any of the following treatments for wound care experimental and investigational because there is inadequate evidence in the peer-reviewed medical literature to support their clinical effectiveness:

- Adherus Dural Sealant;
- Affinity;
- AlloMax for indications other than breast reconstruction; for AlloMax for breast reconstruction, see CP - Breast Reconstruction Surgery;
- Allopatch for soft tissue augmentation and all other indications;
- Alloskin;
- Alloskin RT;
- AlloSource cryopreserved human cadaver skin;
- Allowrap;
- Amnioband;
- AmnioCare;
- AmnioExCel;
- AmnioFix;
- Amniomatrix;
AmnioMTM;
AmnioShield;
Amniotic fluid injection for corneal wound healing and for prevention of adhesions after orthopedic su
Amniox (human embryonic membrane) for tarsel tunnel repair and all other indications;
Architect ECM;
Architect PX;
Artelon (poly[urethane urea] elastomer) for anterior cruciate ligament reconstruction, rotator cuff repa
trapezio-metacarpal joint osteoarthritis and all other indications;
Arthres GraftRope for acromio-clavicular joint separation reconstruction;
Arthroflex (FlexGraft);
Autologous blood-derived products (e.g., autologous platelet-rich plasma, autologous platelet gel, an
autologous platelet-derived growth factors (e.g., Autologel, Procuren, and SafeBlood));
Autologous fat for the treatment of scars;
Axogen 2 nerve wrap;
Avoterm for improvement of skin scarring;
BioDexcel;
BioDfactor/BioDfence human amniotic allograft;
BioDfence Dryflex;
BioDmatrix;
Biostat Biologx fibrin sealant for wound healing and all other indications;
Biotape reinforcement matrix for soft tissue augmentation and all other indications;
Biovance;
CellerateRX;
ClarixFlo;
CollaFix;
Conexa reconstructive tissue matrix;
CorMatrix Patch for cardiac tissue repair and all other indications;
C-QUR biosynthetic mesh;
CRXa;
Cymetra injectable allograft for wound healing (see also CPB 0253 - Vocal Cord Paralysis/Insufficien Treatments);
Dermacell;
DermaClose RC continuous external tissue expander for facilitation of wound closure and all other indications;
Dermagraft for chronic foot ulcer secondary to necrotizing fasciitis;
DermaMatrix for wound healing and other indications other than breast reconstruction; for DermaMat breast reconstruction, see CPB 0185 - Breast Reconstruction Surgery;
Dermapure;
DermaSpan;
Dermavest;
DryFlex (human amnion allograft) for shoulder repair and all other indications;
DuraGen Plus dural regeneration matrix for surgical repair of soft tissue deficiencies and all other ind
DuraSeal;
Durepair Regeneration Matrix®;
Endoform;
ENDORAGen;
Epidex;
EpiFix amniotic membrane for indications other than ocular surface disorders (see CPB 0293 - Corn with Amniotic Membrane Transplantation or Limbal Stem Cell Transplantation);
EPIFLO transdermal continuous oxygen therapy for wound healing;
Equine-derived decellularized collagen products (e.g., OrthADAPT, Unite, and Unite® Biomatrix);
E-Z Derm for wound healing and all other indications;
Evicel fibrin sealant for repair of cerebrospinal fluid leakage and all other indications;
Excellagen;
FlexHD acellular dermal matrix for wound healing; for FlexHD for breast reconstruction, see CPB 018
Breast Reconstruction Surgery;
FloGraft;
Fortaderm;
Fortaderm Antimicrobial;
Gammagraft skin substitute for wound healing and all other indications;
GORE BIO-A Fistula Plug;
Grafix Core and Grafix Prime;
Graftjacket express injectable allograft for wound healing and all other indications;
Guardian;
Hyalomatrix (hMatrix);
HydroFix;
Inforce;
Integra Neural Wrap for peripheral nerve repair and all other indications (see CPB 0416 - Nerve Graft Selected Indications);
Integra Wound Matrix and Integra Flowable Wound Matrix for the management of wounds including p and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds (e.g., donor sites/grafts, post-Mohs surgery, post-las surgery, podiatric, wound dehiscence), trauma wounds (e.g., abrasions, lacerations, second-degree skin tears) and draining wounds and all other indications;
LiquidGen;
Marigen;
Matriderm;
MatriStem wound micromatrix powder;
MediHoney;
Medeor;
Memoderm;
Menaflex Collagen Meniscus Implant (see CPB 0786 - Menaflex);
Meso BioMatrix;
Neoform Dermis for wound healing; for NeoForm for breast reconstruction, see CPB 0185 - Breast Reconstruction Surgery;
Neox 1K;
Neox 100;
NeoxFlo;
Neuragen;
NeuraWrap (see CPB 0416 - Nerve Grafting: Selected Indications);
Neuroflex;
NeuroMatrix collagen nerve cuff for peripheral nerve repair and all other indications (see CPB 0416 - Grafting: Selected Indications);
NeuroMend collagen nerve wrap for peripheral nerve repair and all other indications (see CPB 0416 Grafting: Selected Indications);
NuCel liquid wound covering;
NuShield, NuShield Orthopaedics, and NuShield Spine;
Oasis burn matrix for wound healing and all other indications;
Oasis Tri-Layer Matrix;
OrthADAPT Bioimplant (type I collagen scaffold) for tendon repair and all other indications;
OsseoGuard;
Ovation;
PalinGen membrane for wound healing;
Parietex Composite (PCO) Mesh for the treatment of genito-urinary (e.g., uterine or vaginal vault) pro
Peri-Guard Repair Patch;
Peri-Strips Dry, and Peri-Strips Dry with Veritas Collagen Matrix;
Permacol Biologic Implant for soft tissue surgical repairs, including hernia repair, muscle flap reinforc
rectal prolapse (including intussusception), rectocele repair, abdominal wall defects, plastic and re
reconstructive surgery, complex abdominal wall repair and all other indications;
Porcine-derived decellularized collagen products (e.g., Collamend, Cuffpatch, Pelvicol, and Pelvisoft)
Porcine-derived decellularized fetal skin products (e.g., Mediskin);
Porcine-derived polypropylene composite wound dressing (e.g., Avaulta Plus);
PriMatrix acellular dermal tissue matrix for wound healing and all other indications;
Promogran;
PTFE felt;
Puracol;
Radiofrequency stimulation devices (e.g., Provant Wound Closure System, MicroVas Vascular Treat
System) for wound healing;
Repriza;
Revitalon;
Seamguard;
Silver-coated wound dressings (e.g., Acticoat, Actisorb, and Silversorb) for wound healing and all oth
indications;
Solana allograft;
SportMatrix;
SportMesh;
Strattice tissue matrix for wound healing; for Strattice for breast reconstruction, see CPB 0185 - Brea
Reconstruction Surgery;
Suprathel;
SurgiMend for plastic and reconstructive surgery, muscle flap reinforcement, hernia repair, reinforc
soft tissues repaired by sutures or suture anchors, during tendon repair surgery (including reinforcem
the rotator cuff, patellar, Achilles, biceps, quadriceps, or other tendons), and all indications other than re
reconstruction; for SurgiMend for breast reconstruction, see CPB 0185 - Breast Reconstruction Surg
Surgisis (including Surgisis AFP Anal Fistula Plug, Surgisis Gold Hernia Repair Grafts, and Surgisis Biodesign);
Talymed;
TenoGlide tendon protector sheet (Tendon WrapTM tendon protector) for the management and prote
tendon injuries and all other indications;
TenSix (acellular dermal matrix) for tendon repair and all other indications;
TheraSkin;
TissueMend for the repair or reinforcement of soft tissues repaired by sutures or suture anchors duri
tendon repair surgery, including reinforcement of the rotator cuff, patellar, Achilles, biceps, quadricep
other tendons, and all other indications;
Tornier BioFiber Absorbable Biological Scaffold, and Tornier Collagen Coated BioFiber Scaffold;
Vaso Shield;
Veritas collagen matrix for use as an implant in the surgical repair of soft tissue deficiencies and all o
indications;
Vitagel surgical hemostat for wound healing and all other indications;
X-Repair;
XCM Biologic;
Background

Apligraf (Graftskin):

In recent years, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue engineered human skin equivalents (HSE). Apligraf (graftskin) (Organogenesis, Canton, MA) is a living, cell-based, bilayered skin construct. Like human skin, Apligraf has 2 primary layers, including an outer, epidermal layer of living human keratinocytes, the most common cell type of the human epidermis, to replicate the structure of the epidermis. The human keratinocytes and fibroblasts are derived from neonatal foreskins. The dermal layer of Apligraf consists of living human fibroblasts and bovine type 1 collagen, the most common cell type in the human dermis, to produce a dermis-like structure that produces additional matrix proteins. Proponents state that Apligraf stimulates the patient cells to regenerate tissue and heal the wound through mechanisms that include the secretion of growth factors, cytokines, and matrix proteins (Snyder, et al., 2012). Apligraf does not contain melanocytes, Langerhans' cells, macrophage lymphocytes, or tissue structures such as blood vessels, hair follicles, and sweat glands.

Apligraf has has received a premarket approval (PMA) by the U.S. Food and Drug Administration (FDA) in 1998 for treatment of venous leg ulcers and in 2001 for treatment of diabetic ulcers. Apligraf has been approved for marketing under a premarket approval for "use with standard therapeutic compression for the treatment of noninfected partial thickness skin ulcers due to venous insufficiency of greater than 1 month duration and which have not adequately responded to conventional ulcer therapy." Multiple supplemental approvals have been added since the first approval including an indication for treating diabetic foot ulcers. Several of the supplements involve approval of the use of nonhuman keratinocyte or fibroblast cell strains in the manufacture of Apligraf (Snyder, et al., 2012). Venous ulceration, a relatively common manifestation of venous hypertension, is often refractory to conservative treatment and difficult to treat effectively. Human skin equivalents appeared to promote wound healing in 3 ways: (i) apparent graft "take"; (ii) temporary wound closure (persistence of HSE with subsequent wound re-epithelialization from wound margins); and (iii) stimulation of healing without temporary persistence by acting as a biologic dressing.

Apligraf was shown in clinical trials to heal even longstanding (greater than 1 year's duration) venous leg ulcers more effectively and faster than compression therapy alone. The results of controlled, multi-center studies indicate that Apligraf interacts with the patient's own cells, responds to individual wound characteristics, and promotes healing. Further studies are underway to investigate its use for the treatment of pressure sores, dermatological surgery wounds and burns. At this time, there is insufficient information to extend coverage for the use of Apligraf in the treatment of these conditions.

Dermagraft:

Another product approved by the FDA for repair of diabetic foot ulcers is Advanced BioHealing, Inc. (La Jolla, CA) Dermagraft, composed of cryopreserved human-derived fibroblasts and collagen applied to a bioabsorbable mesh to the material used in strong bioabsorbable sutures. The fibroblasts are obtained from human newborn foreskin tissue. During the Dermagraft manufacturing process, the human fibroblasts are seeded onto a bioabsorbable polyglactin 910 scaffold. The fibroblasts proliferate to fill the interstices of this scaffold and secrete human dermal collagen, matrix growth factors and cytokines, to create a 3-dimensional human dermal substitute containing metabolically active, living cells. Dermagraft does not contain macrophages, lymphocytes, blood vessels, or hair follicles. It comes frozen as a sheet (2 by 3 inches) for a single application.
In September 2001, FDA approved Dermagraft for marketing under the premarket approval (PMA) process for “use treatment of full-thickness diabetic foot ulcers greater than six weeks’ duration which extend through the dermis, b tendon, muscle, joint capsule or bone exposure. Dermagraft should be used in conjunction with standard wound ca regimens and in patients that have adequate blood supply to the involved foot.”

In support of FDA approval, a 12-week multi-center clinical study was performed involving 314 patients with chroni diabetic ulcers who were randomized to Dermagraft or control. Patients in the Dermagraft group received up to 8 applications of Dermagraft over the course of the 12-week study. All patients received pressure-reducing footwear were encouraged to stay off their study foot as much as possible. By week 12, the median percent wound closure Dermagraft group was 91 % compared to 78 % for the control group. The study also showed that ulcers treated w Dermagraft closed significantly faster than ulcers treated with conventional therapy. Patients treated with Dermagr 1.7 times more likely to close than control patients at any given time during the study. No serious adverse events w attributed to Dermagraft. There was a lower rate of infection, cellulitis, and osteomyelitis in the Dermagraft treated Of the patients enrolled, 10.4% of the Dermagraft patients developed an infection while 17.9 % of the Control patie developed ulcer infection. Overall, 19 % of the Dermagraft group developed infection, cellulitis, or osteomyelitis. In control group, 32.5 % patients developed the same adverse events. Dermagraft has also been approved by the F use in the treatment of wounds related to dystrophic epidermolysis bullosa.

In May 2006, Advanced BioHealing purchased the global rights to Dermagraft from Smith & Nephew.

TransCyte

TransCyte (Advanced Tissue Sciences Inc. La Jolla, CA), a bioactive skin substitute, was granted premarket appro (PMA) by the FDA in 1997 for “for use as a temporary wound covering for surgically excised full-thickness and dee thickness thermal burn wounds in patients who require such a covering prior to autograft placement.” TranCyte wa indicated for chronic wounds. TransCyte consists of human dermal fibroblasts grown on nylon mesh, combined wi synthetic epidermal layer. TransCyte can be used as a temporary covering over full thickness and some partial-thi burns until autografting is possible. It can also be used as a temporary covering for some burn wounds that heal w autografting. TransCyte is packaged and shipped in a cryo-preserved state to burn treatment centers. The surgeo thaws the product and stretches it over a burn site. In about 7 to 14 days, the TransCyte starts peeling off, and the trims it away as it peels.

Orcel

Orcel is an absorbable bilayered cellular matrix, made of bovine collagen, in which human dermal cells have been OrCel (Forticell Bioscience, Inc., formerly Ortec International, Inc., New York, NY) is composed of normal, human, allogeneic, epidermal keratinocytes and dermal fibroblasts (Snyder, et al., 2012). The cells are cultured in two sep layers into a type I bovine collagen sponge. Neonatal human fibroblasts and keratinocytes are obtained from the sa donor. According to the manufacturer, the matrix is designed to provide a structure for host cell invasion along with cytokines and growth factors. The matrix is absorbed as the wound heals. Because of the extensive culturing proce cells do not express the antigens responsible for rejection. The cells produce growth factors. When this dressing is to the open wound created where the patient's healthy skin was removed, the patient's own skin cells migrate into t dressing and take hold, along with the cultured cells, as healing commences. The dressing is gradually absorbed the healing process.

Orcel was approved by the FDA under its humanitarian device exemption (HDE) in February 2001 for healing dono wounds in burn victims, and for use in patients with recessive dystrophic epidermolysis bullosa (RDEB) undergoin reconstruction surgery to close and heal wounds created by the surgery, including those at donor sites (Snyder, et 2012). Composite Cultured Skin (Ortec International, Inc., New York, NY) is “indicated for use in patients with mitte deformities due to Recessive Dystrophic Epidermolysis Bullosa (RDEB) as an adjunct to standard autograft proced (i.e., skin grafts and flaps) for covering wounds and donor sites created after the surgical release of hand contractu
“mitten” hand deformities).” OrCel has also received PMA approval for treating fresh, clean, split-thickness, donor s wounds in burn patients and may, therefore, be used by physicians off-label on chronic wounds. A PMA applicatio FDA has been filed for treating venous leg ulcers. Studies will test OrCel in treating diabetic foot ulcers. The manuf indicates that it will promote OrCel for treating chronic and acute wounds. Forticell Bioscience, Inc., is the former O International, Inc.

Autologous Blood Derived Products: Autologous Platelet-Rich Plasma, Autologous Platelet Gel, and Autologous Pl Derived Growth Factors (e.g., Procuren)

Procuren is a platelet-derived growth factor suggested for use in the management of chronic non-healing wounds. Agency for Health Care Policy and Research's Clinical Practice Guideline Treatment of Pressure Ulcers concluded effectiveness of growth factors for this indication has not been sufficiently established to warrant recommendation f In 1992, the Centers for Medicare and Medicaid Services (CMS) issued a national non-coverage determination for derived wound healing formulas intended to treat patients with chronic, non-healing wounds. This decision was ba lack of sufficient published data to determine safety and efficacy, and a Public Health Service technology assessm CMS Decision Memorandum (2003) concluded that there is insufficient evidence of the effectiveness of autologous rich plasma (PRP) or autologous platelet-derived growth factor (PDGF) in improving healing in chronic non-healing cutaneous wounds. In a second reconsideration, CMS concluded there is insufficient evidence of effectiveness of autologous PRP for the treatment of chronic non-healing cutaneous wounds or for acute surgical wounds when the autologous PRP is applied directly to the closed incision or dehiscent wounds (CMS, 2007).

Silver-Coated Wound Dressings (Acticoat, Actisorb)

Silver-coated wound dressings produce sustained release of ionic silver to decrease the incidence of infection. As dressing material accumulates fluid, silver ions are released from the dressing into the wound environment. Silver technology was developed to prevent wound adhesion, limit nosocomial infection, control bacterial growth, and fac burn wound care through a silver-coated dressing material. Silver-coated wound dressings such as Acticoat and A offer new forms of dressing for burn wounds, but require further investigation. Well-controlled clinical trials are nee comparing clinical outcomes of silver-coated wound dressings with standard wound dressings in patients in various of burn wound care. An evidence review prepared for the Cochrane Collaboration (Bergin et a., 2006) concluded: the widespread use of dressings and topical agents containing silver for the treatment of diabetic foot ulcers, no randomised trials or controlled clinical trials exist that evaluate their clinical effectiveness. Trials are needed to det clinical and cost-effectiveness and long-term outcomes including adverse events.”

The Provant Wound Closure System

The Provant Wound Closure System (Regenesis Biomedical Inc., Scottsdale, AZ) uses a low-level radiofrequency that proponents state accelerates healing of chronic wounds by stimulating the production of endogenous growth f and the proliferation of fibroblasts and epithelial cells, in a process the manufacturer has labeled "Cell Proliferation Induction" or CPI. The Provant Wound Closure System (Regenesis was cleared by the FDA as a wound healing d based on a 510(k) premarket notification. Treatment with the Provant System is usually administered for 30 mins r through dressing twice-daily. However, there is insufficient clinical evidence to support its effectiveness. Available evidence on CPI has focused mainly on the effects of low-level radiofrequency signals on growth factors and cell proliferation in vitro. Peer-reviewed literature is limited to a small short-term randomized controlled pilot study whic that the Provant system accelerated closure of pressure wounds (Ritz et al, 2002). This finding needs to be verifie larger multicenter studies. Furthermore, studies would need to assess if CPI adds to the effectiveness of standard of chronic wound management.

MicroVas

MicroVas (MicroVas Technologies, Inc., Tulsa OK) is a radiofrequency stimulation device used to increase circulat extremity or body part in order to speed wound healing. According to the manufacturer, MicroVas is indicated for t
treatment of stage III and IV pressure ulcers. The manufacturer states that the MicroVas is also indicated for the treatment of chronic and non-healing diabetic and venous ulcers, treatment of ischemic rest pain, muscle disuse atrophy, diabetic neuropathy, and paresthesia relating to neuropathy. However, there is a lack of scientific evidence to support its effectiveness for these indications.

A meta-analysis concluded that there is no reliable evidence of benefit of electromagnetic therapy generally in healing pressure sores (Olyaei Manesh et al, 2006) or venous leg ulcers (Ravaghi et al, 2006). Additionally, a systemic review of the literature on treatment of pressure sores concluded that the effectiveness of electrotherapy on pressure sores is unknown (Cullum and Petherick, 2007).

Graftjacket Tissue Matrix

Graftjacket tissue matrix (Wright Medical Technology, Inc, Arlington, TN) is an acellular regenerative tissue matrix designed to provide a scaffold for wound repair. Donated human tissue is treated to remove the epidermis and cellular components, but it retains collagen, elastin, and proteoglycans, and the internal matrix of the dermis remains intact (Snyder, et al., 2012). The tissue is then cryogenically preserved. The company states that removal of the cellular component reduces rejection, retention of dermal proteins allows for revascularization and cellular repopulation, and cryopreserved tissue matrix reduces inflammation.

In a pilot, prospective, randomized study (n = 40), Brigido et al (2004) ascertained the effectiveness of this tissue matrix for wound repairing of diabetic foot ulcers compared with conventional treatment. Only a single administration of the tissue matrix was required. After 1 month of treatment, preliminary results showed that this novel tissue matrix promoted healing at a statistically significant rate over conventional treatment. Results of this study are promising, but they need to be verified by further investigation with larger sample sizes and longer follow-ups.

Graftjacket Xpress Flowable Soft-Tissue Scaffold is a micronized (finely ground) decellularized soft tissue scaffold for the repair or replacement of damaged or inadequate integumental tissue, specifically deep, dermal wounds that may extend deep into the tendon and bone (CMS, 2006). Graft Xpress is a soft tissue graft (reconstituted as a "gel"), which is comprised solely of human dermal tissue, including protein and collagen structure and essential biochemical composition. The re-hydrated skin substitute scaffold is placed into the tunnels or tracts, and is intended to produce the same or superior clinical outcomes with a minimally invasive procedure. There is a lack of peer-reviewed published medical literature on the effectiveness and safety of the Graft Xpress.

Lanier et al (2010) retrospectively identified tissue expander/implant breast reconstructions by five surgeons at a single institution from 2005 to 2008 and divided into 2 cohorts: (i) use of acellular dermal matrix (ADM) (n = 75) versus (ii) standard submuscular placement (n = 52). The ADM group had a statistically significant higher rate of infection (2 versus 12.0 %, p = 0.022), re-operation (25.0 % versus 8.0 %, p = 0.011), expander explantation (19.2 % versus 5.0 %), and overall complications (46.2 % versus 22.7 %, p = 0.007). When stratifying by breast size, a higher complication rate was not observed with the use of ADM in breasts less than 600 g, whereas ADM use in breasts larger than 600 g was associated with a statistically significant higher rate of infection when controlling for the occurrence of skin necrosis. ADM cohort had a significantly higher mean initial tissue expander fill volume (256 ml versus 74 ml, p < 0.001) and significantly higher mean initial tissue expander fill ratio (49 % versus 17 %, p = 0.001). The authors concluded that additional studies are needed to define the ideal patient population for ADM use in tissue expander/implant breast reconstruction.

Spear et al (2011) examined the use of ADM for correction or prevention of implant-associated breast deformities. who underwent primary aesthetic breast surgery or secondary aesthetic or reconstructive breast surgery using AD implants between November of 2003 and October of 2009 were reviewed retrospectively. Patient demographics, indications for ADM, and ADM type and inset pattern were identified. Pre-operative and post-operative photographs were taken. Success or failure of the procedure, complications, and need for related or unrelated revision surgery were recorded. Of 52 patients, ADM placed alongside 77 breast prostheses, with a mean follow-up of 8.6 months (range 0 to 30.4 months). Indications included prevention of implant bottoming-out (n = 6), treatment of malposition (n = 32), r
= 20), capsular contracture (n = 16), and skin flap deficiency (n = 16). Seventy-four breasts (96.1 %) were managed successfully with ADM. Three failures consisted of 1 breast with bottoming-out following treatment of capsular contracture, 1 breast with major infection requiring device explantation, and 1 breast with recurrent rippling. There was a 9.1 % complication rate, consisting of 3 mild infections, 1 major infection necessitating explantation, 1 hematoma, and 1 implant malposition. The authors concluded that based on this experience in 77 breasts, ADM has shown promise in treating and preventing capsular contracture, rippling, implant malposition, and soft-tissue thinning.

PriMatrix Acellular Dermal Tissue Matrix

PriMatrix acellular dermal tissue matrix, formerly known as DressSkin (TEI Biosciences Inc., Boston, MA) was cleared by the FDA via the 510(k) process. It is an acellular collagen dermal tissue matrix derived from fetal bovine skin. PriMatrix is indicated for the management of wounds including second degree burns, draining, surgical, and trauma wounds, a pressure, diabetic, and venous ulcers.

Primatrix is an animal-derived, extracellular matrix dermal substitute intended to act as a scaffold to allow cell and vector penetration (Snyder et al, 2012). According to the manufacturer, TEI biological matrix products are derived from fetal bovine dermis collagen. In producing this product, the epidermis, hair, muscle, and fascia are removed. The dermis is treated to remove cells and infectious agents while preserving biological properties and structures. The product is converted to sheets, freeze dried, and sterilized. When applied to a wound, the product may assist in the wound healing process.

Primatrix Dermal Repair Scaffold was cleared for marketing under the 510(k) process and “is intended for the management of wounds that include: partial and full thickness wounds; pressure, diabetic, and venous ulcers; second degree burns; surgical wounds-donor sites/grafts, post-Mohs surgery, post-laser surgery, podiatric, wound dehiscence; trauma wounds, abrasions, lacerations, and skin tears; tunnelled/undermined wounds; draining wounds.” However, there is insufficient scientific evidence regarding the effectiveness of PriMatrix acellular dermal tissue matrix for wound healing. Available evidence is comprised primarily of small, retrospective studies. A systematic evidence review of wound healing products prepared for the Agency for Healthcare Research and Quality found no studies of Primatrix of sufficient quality to meet criteria for inclusion in the systematic evidence review (Snyder et al, 2012).

In a prospective multi-center study, Kavros et al (2014) evaluated the healing outcomes of chronic diabetic foot ulcers treated with PriMatrix, a fetal bovine acellular dermal matrix. Inclusion criteria required the subjects to have a chronic diabetic foot ulcer (DFU) that ranged in area from 1 to 20 cm² and failed to heal more than 30 % during a 2-week period when treated with moist wound therapy. For qualifying subjects, PriMatrix was secured into a clean, sharply debrided wound, dressings were applied to maintain a moist wound environment, and the diabetic ulcer was press loaded. Wound area measurements were taken weekly for up to 12 weeks and PriMatrix was re-applied at the discretion of the treating physician. A total of 55 subjects were enrolled at 9 U.S. centers with 46 subjects progressing to study completion. Ulcers had been in existence for an average of 286 days and initial mean ulcer area was 4.34 cm². Of the subjects completing the study, 76 % healed by 12 weeks with a mean time to healing of 53.1 ± 21.9 days. The mean number of applications for these healed wounds was 2.0 ± 1.4, with 59.1 % healing with a single application of PriMatrix and 22.9 % healing with 2 applications. For subjects not healed by 12 weeks, the average wound area reduction was 73.4 ± 15.4 %. The authors concluded that the findings of this multi-center prospective study suggested that PriMatrix used in conjunction with a center’s standard of care wound therapy offers a cost-effective strategy to heal diabetic foot ulcers. Additionally, PriMatrix was found to be cost-effective compared to other advanced wound therapy products based on 12-week healing outcomes as well as number of applications needed to achieve successful closure. The main drawback of this study was the lack of a direct comparison within the study to standard of care as well as to other advanced therapies. The authors stated that the findings from this study should be expanded to include clinical efficacy comparisons as well as cost-effectiveness comparisons in order to maximize health benefits per dollar spent for the treatment of diabetic foot ulcers.

Oasis Wound Dressing
Oasis wound dressing (Cook Biotech Inc., West Lafayette, IN), a tissue-engineered collagen matrix derived from the porcine small intestinal submucosa (SIS). Oasis Wound Matrix was cleared for marketing under the 510(k) process indicated “for the management of wounds including: partial and full-thickness wounds; pressure ulcers; venous ulcer; diabetic ulcers; chronic vascular ulcers; tunnelled, undermined wounds; surgical wounds (donor sites/grafts, post-M surgery, post-laser surgery, podiatric, wound dehiscence); trauma wounds (abrasions, lacerations, second-degree and skin tears); draining wounds. The device is intended for one-time use.”

Oasis Wound Matrix is an extracellular matrix derived from porcine small intestinal submucosa (Snyder, et al., 2012) According to the manufacturer, the intestinal material is absorbed into the wound during the healing process. Oasis applied to wounds after débridement. The edges of the Oasis sheet extend beyond the wound edges and are secured with tissue sealant, bolsters, dissolvable clips, sutures, or staples. The sheet is rehydrated with sterile saline and covered with a nonadherent, primary wound dressing followed by a secondary dressing to contain exudate. Oasis is reapplied every 2 to 3 days or as needed.

In a prospective, randomized, controlled multi-center study (n = 120), Mostow and colleagues (2005) examined the effectiveness of Oasis in the treatment of chronic leg ulcers. Patients were randomly assigned to receive either topical treatment of SIS combined with compression therapy (n = 62) or compression therapy alone (n = 58). Ulcer healing was determined at enrollment and weekly throughout the treatment. Healing was assessed weekly for up to 12 weeks. Recurrence after 6 months was recorded. The primary outcome measure was the proportion of ulcers healed in each group at 12 weeks. After 12 weeks of treatment, 55% of the wounds in the Oasis group were healed, as compared to 31% in the standard-care group (p = 0.0196). None of the healed Oasis-treated subjects who were seen at the 6-month follow-up experienced ulcer recurrence. These investigators concluded that Oasis, as an adjunct therapy, significantly improved healing of chronic leg ulcers over compression therapy alone. Moreover, the authors noted that a definitive determination of the composition of Oasis and its positive effects on chronic wounds has not been established. Also, the number of wounds examined at the 6-month follow-up suggested that more research especially longer follow-up is needed to ascertain recurrence after treatment with Oasis.

In another randomized, prospective, controlled multi-center study (n = 73), Niezgoda et al (2005) compared healing in patients with full-thickness diabetic foot ulcers treated with Oasis versus Regranex gel. Patients with 1 diabetic foot ulcer were entered into the trial and completed the protocol. They were randomized to receive either Oasis (n = 37) or Regranex gel (n = 36) and a secondary dressing. Wounds were cleansed and debrided, if needed, at a clinic visit. Dressings were changed as needed. The maximum treatment period for each patient was 12 weeks. A week of treatment, 18 (49%) Oasis-treated subjects had complete wound closure compared with 10 (28%) Regranex-treated patients. These researchers concluded that although the sample size was not large enough to demonstrate a statistically significant difference, the study results showed that treatment with Oasis is as effective as Regranex in healing full-thickness diabetic foot ulcers by 12 weeks. One of the drawbacks of this study was that the findings did not reach statistical significance, namely, the overall healing rates between groups were similar. In addition, there were more cases of infection in the Oasis-treated group than the Regranex-treated group. Furthermore, the 6-month follow-up evaluation did not allow for adequate evaluation of long-term effectiveness.

Romanelli et al (2007) compared the effectiveness of Oasis wound matrix versus Hyaloskin in the treatment of diffi cult wounds of mixed arterial/venous etiology. The purpose of the study was to examine whether a single extracellular matrix component, such as hyaluronan (Hyaloskin), can stimulate healing of mixed arterial/venous ulcers or whether a more integrated extracellular replacement that contains multiple active extracellular matrix components is needed. Four patients were prospectively selected for enrollment into a randomized trial. The enrolled patients met the following criteria: age greater than 18 years with mixed arterial/venous leg ulcer by clinical and instrumental assessment, venous reflux by Doppler flow studies, ankle brachial pressure index greater than 0.6 and less than 0.8, ulcer duration greater than 6 weeks and size 2.5 to 10 cm(2), and 50% or more granulation tissue on the wound bed. Patients were excluded if they were diabetics, smokers, had clinical signs of wound infection, an ankle brachial pressure index less than 0.8, or necrotic tissue on the wound bed, had known allergy to the treatment products or were unable to deal with the protocol. Patients who met the inclusion/exclusion criteria were randomized to treatment with OASIS (n = 27) or Hyaloskin (n = 27).
The sequence of randomization was generated through every other patient selection by the clinician. Patients were advised not to use any compression system during the study. After 16 weeks of treatment, patients in each group evaluated on 4 criteria: (i) complete wound healing, (ii) time to dressing change, (iii) pain, and (iv) comfort. Complete wound closure was achieved in 82.6% of Oasis-treated ulcers compared with 46.2% of Hyaloskin-treated ulcers (p < 0.001). Statistically significant differences favoring the Oasis treatment group were also reported for time to dressing change (p < 0.05), pain (p < 0.05) and patient comfort (p < 0.01). The authors stated that these results suggest that an effective treatment for difficult-to-heal mixed arterial/venous ulcers and that replacement of the major components of the dermal extracellular matrix is more effective than replacing it with hyaluronan alone.

In a randomized comparison of Oasis wound matrix versus moist wound dressing, Romanelli et al (2010) evaluated complete wound healing, time to dressing change, and formation of granulation tissue in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Fifty adults with lower leg ulcers of mixed arterial/venous (n = 23) and venous (n = 27) etiology were prospectively selected for enrollment. Patients had the following characteristics: venous or mixed arterial/venous leg ulcer by clinical and instrumental assessment and ankle brachial index ranging between 0.6 and ulcer duration of greater than 6 months, ulcer size of greater than 2.5 cm(2), and 50% granulation tissue on wound. Patients were excluded for clinical signs of infection, ankle brachial index less than 0.6, necrotic tissue on wound, or known allergy to treatment products, or if they were unable to deal with the protocol. Patients who met the inclusion/exclusion criteria were randomized to treatment with Oasis (n = 25) or with standard moist wound dressing (petrolatum-impregnated gauze; n = 25). The investigators reported that extracellular matrix-treated ulcers achieve complete healing on average in 5.4 weeks as compared with 8.3 weeks for the control group treated with moist wound dressing (p = 0.02) and at the primary time point evaluated (8 weeks), complete wound closure was achieved in 80% extracellular matrix-treated ulcers compared with 65% of ulcers in the control group (p < 0.05). Statistically significant differences favoring the extracellular-matrix treatment group were also reported for time to dressing change (p < 0.05), and percentage of granulation tissue formed (p < 0.05). The authors concluded that overall, the biological extracellular matrix was more beneficial than moist wound dressings for the treatment of patients with mixed arterial/venous or venous ulcers. Although current methods of standard care can be effective in the treatment of lower extremity ulcers, in the Oasis significantly reduced time to healing as compared with moist wound dressing in chronic, difficult-to-heal mixed arterial/venous leg ulcers.

O'Donnell and Lau (2006) examined if more "modern" complex wound dressings further improve the healing of venous ulcers over that with simple wound dressings. These investigators conducted a systematic review of RCTs of wound dressing trials that were published from October 1, 1997, through September 1, 2005. They searched MEDLINE, and the Cochrane Controlled Trials Registry Database to identify RCTs. Criteria for ultimate selection included treatment with compression and an objective outcome describing the proportion of wounds healed. A total of 20 RCTs were satisfied these criteria and were classified into 3 wound dressing classes: (i) semi-occlusive/occlusive group (n = 7), and (ii) growth factor group (n = 5), and (iii) human skin equivalent group (n = 5). Assessment of study design quality for these RCTs showed a low percentage (less than 49%) of RCTs that incorporated at least 3 of 7 indicators of trial quality seemed better in the 5 RCTs that showed significance for ulcer healing: 4 of the studies used at least 6 of the 7 characteristics of adequate study design. Five (25%) of the 20 RCTs had a statistically significantly improved proportion of ulcers healed in the experimental dressing group over control values: zinc oxide paste bandage (79% versus 56% Tegasorb (59% versus 15% in the semi-occlusive/occlusive group and peri-lesional injection of granulocyte-macrocyte colony-stimulating factor (57% versus 19%) and porcine collagen derived from small-intestine submucosa (Oasis; versus 34%) in the growth factor group. In the sole significant RCT from the human skin equivalent group, Apligra was superior to Tegapore (48%). Four of these 5 studies also showed an improved time to complete healing by K Meier estimate. The authors concluded that certain wound dressings can improve both the proportion of ulcers healed the time to healing over that achieved with adequate compression and a simple wound dressing. The selection of specific dressing, however, will depend on the dressing characteristics for ease of application, patient comfort, wound drainage absorption, and expense.

Oasis Burn Matrix
Oasis Burn Matrix (Cook Biotech Inc., West Lafayette, IN) is an extracellular matrix created from the submucosal lay porous small intestine. The submucosa is extracted in a manner that removes all cells but leaves the submucosa intact. This matrix is intended to provide an acellular scaffold that accommodates remodeling of host tissue. The Burn Matrix has increased thickness allowing application for an extended period of time. There is a lack of evidenc peer-reviewed published medical literature on the effectiveness of the Oasis Burn Matrix.

Oasis Ultra Tri-Layer Wound Matrix

OASIS Ultra Tri-Layer Wound Matrix is an extracellular matrix derived from porcine small intestinal submucosa (SI) indicated for the management of wounds, including partial and full-thickness wounds, pressure ulcers, venous ulcer chronic vascular ulcers, diabetic ulcers, trauma wounds (abrasions, lacerations, second degree burns, and skin te drainage wounds, and surgical wounds. After the wound bed is free of exudate and devitalized tissue, the wound m applied over the wound. Once applied, tissues adjacent to the SIS matrix deliver cells and nutrients to the wound using the SIS material as a conduit. The cells rapidly invade the SIS material and capillary growth follows, allowing nutrients to enter the matrix. SIS is strong at the time of placement, and is gradually remodeled while the host syste reinforces and rebuilds the damaged site with host tissue. As healing occurs, sections of OASIS Ultra Tri-Layer Wo Matrix may gradually peel. All dressings should be changed every 7 days, or as necessary. OASIS Ultra Tri-Layer Matrix is supplied in sterile peel-open packages intended for one-time use. It is supplied in two sizes: 7 x 10 cm an cm. According to the manufacturer, OASIS Ultra Tri-Layer Wound Matrix differs from other products because it is a matrix with 3 layers.

Epicel

Epicel (Genzyme Biosurgery, Cambridge, MA) is a cultured epidermal autograft intended to treat deep dermal or fu thickness burns (Snyder, et al., 2012). According to the product labeling, “Epicel® cultured epidermal autografts (C an aseptically processed wound dressing composed of the patient’s own (autologous) keratinocytes grown ex vivo presence of proliferation-arrested, murine (mouse) fibroblasts. Epicel® consists of sheets of proliferative, autologo keratinocytes, ranging from 2 to 8 cell layers thick and is referred to as a cultured epidermal autograft.” Epicel is cre co-cultivation of the patient’s cells with murine cells and contains residual murine cells. Therefore, FDA considers xenotransplantation product. Epicel was granted an humanitarian device exemption (HDE) by FDA in October 2007 “indicated for use in patients who have deep dermal or full thickness burns comprising a total body surface area of than or equal to 30 percent. It may be used in conjunction with split-thickness autografts, or alone in patients for w thickness autografts may not be an option due to the severity and extent of their burns.” Epicel is not indicated for u chronic wounds.

Epicel is indicated for use in a subgroup of the burn population that represents the most severely injured patients. granted Epicel its humanitarian use device designation in 2007 for the treatment of life-threatening wounds resultin severe burns. Due to the small population for which Epicel is indicated, it is unlikely there will be sufficient evidenc demonstrate the effectiveness of Epicel for the treatment of burns. The primary benefit of Epicel is that the total nu grafts required to treat a patient can be produced from a single biopsy of unburned skin. Patients suffering burns o significant body surface area can be completely covered regardless of the amount of unburned skin available for s thickness skin grafts. This minimizes the time to wound closure and minimizes the time in which the patient is mos susceptible to serious and potentially life threatening complications. Munster (1992) reported on a series of patien 10) treated with cultured epidermal autografts who had a significantly reduced mortality rate (14 %) when compare control patients (48 %). In a 5-year single-center series, Carsin et al (2000) treated 30 burn patients with cultur e autografts (total body surface area of a mean of 37 %). Cultured epithelial autografts achieved permanent coverag mean of 26 % of total body surface area, an area greater than that covered by conventional autografts and surviva % in these severely burned and otherwise traumatized patients. Final cultured epidermal autograft take was a mea %.
Epicel is made from a patient's own skin cells and then grown on a layer of mouse cells to enhance growth. It is in for use in patients who have deep dermal or full thickness burns comprising a total body surface area of greater tha equal to 30 %. It may be used in conjunction with split-thickness autografts, or alone in patients for whom split-thick autografts may not be an option due to the severity and extent of their burns. Enough skin can be grown from a bio size of a postage stamp to cover the entire body. The process takes approximately 16 days and the skin graft inte with surrounding tissue 3 to 4 weeks after surgery.

BioBrane

Biobrane (Mylan Laboratories, Inc., Canonsburg, PA) is a biosynthetic wound dressing constructed of a silicon film nylon fabric partially imbedded into the film. The fabric presents to the wound bed a complex 3-dimensional struct filament thread to which collagen has been chemically bound. Blood/sera clot in the nylon matrix, thus, firmly adhe dressing to the wound until epithelialization occurs.

Phillips et al (1989) reviewed 851 applications of Biobrane on partial skin thickness burn wounds awaiting epithelia After the patients had been evaluated and resuscitated as needed, the burn wounds were cleansed and debrided, evaluated as shallow were treated with Biobrane application. Joint surfaces were splinted for immobilization. The was inspected at 24 and 48 hours and if any fluid had accumulated it was aspirated and the wound was redressed the Biobrane was adherent, the wound was covered with a light dressing and joint immobilization was discontinued Treatment with Biobrane dressing provided certain advantages over other topical wound care. As the dressing ch were performed less frequently outpatient care was possible, with a resultant decrease in both the length of hospita and the ultimate cost of burn care. Wound desiccation is prevented and pain is decreased. Accurate diagnosis of depth is crucial if Biobrane is to be used. Very deep wounds will not allow Biobrane adherence, neither will it occu wound has a high bacterial count. If joint surfaces are not splinted, the Biobrane will shear and not adhere to the w Convex and concave surfaces can be treated with Biobrane, which may need to be meshed.

Bishop (1995) noted that Biobrane offers a number of advantages as a wound dressing for children. It does not req use of surgical instruments, noisy distractions, painful manipulation of the wound, or regimented daily dressing cha Biobrane does offer the pediatric patient with burns immediate comfort and protection, and enhances patient comp and parental satisfaction. This is corroborated by the findings of Cassidy et al (2005). These researchers compar effectiveness of Biobrane and Duoderm for the treatment of small intermediate thickness burns in children in a pros randomized fashion to determine their relative impact on wound healing, pain scores, and cost. Patients under 18 age with intermediate thickness burns on a surface area less than 10 % were enrolled and treated with one of the t dressing systems. Data collected included mechanism of injury, time to complete healing, pain scores, and institut cost of materials until healing was complete. No significant difference in time to healing or pain scores was detect between the 2 groups. The cost of each treatment was statistically more expensive in the Biobrane group. The res this study showed that Duoderm and Biobrane provide equally effective treatment of partial thickness burns among pediatric population.

Barret et al (2000) stated that partial-thickness burns in children have been treated for many years by daily, painful washing, and cleansing of the burn wound, followed by topical application of anti-microbial creams. Pain and impa wound healing are the main problems. These investigators hypothesized that the treatment of 2nd-degree burns w Biobrane is superior to topical treatment. A total of 20 pediatric patients were prospectively randomized into 2 grou compare the effectiveness of Biobrane versus 1 % silver sulfadiazine. The rest of the routine clinical protocols wer followed in both groups. Demographic data, wound healing time, length of hospital stay, pain assessments and pa medication requirements, and infection were analyzed and compared. Main outcome measures included pain, pai medication requirements, wound healing time, length of hospital stay, and infection. The application of Biobrane to thickness burns proved to be superior to the topical treatment. Patients included in the biosynthetic temporary cov presented with less pain and required less pain medication. Length of hospital stay and wound healing time were a significantly shorter in the Biobrane group. None of the patients in either group presented with wound infection or skin autografting. The authors concluded that the treatment of partial-thickness burns with Biobrane is superior to
therapy with 1% silver sulfadiazine. Pain, pain medication requirements, wound healing time, and length of hospital stay are significantly reduced. Furthermore, in a review on tissue-engineered temporary wound coverings, Ehrenreich Ruszczak (2006) stated that "both Biobrane and TransCyte have a strong body of evidence supporting their use in wounds. The most important clinical advantages of both products are prevention of wound desiccation, reduced dressing changes, and in most reported studies, an acceleration in healing. TransCyte may be justified in thick, 1cm, 0.5 cm and deep partial thickness injuries, whereas Biobrane is more appropriate for more superficial wounds."

AlloDerm

AlloDerm (Life Cell Corp., The Woodlands, TX), an acellular dermal matrix processed from human allograft skin. The product has been promoted from the manufacturer for hernia and breast reconstruction. AlloDerm has been used in treatment of burn injury. According to the product labeling, "AlloDerm is to be used for repair or replacement of donor or inadequate integumental tissue or for other homologous uses of human integument." Donated human skin tissue supplied by tissue banks and processed into the dermis product. During the processing, cells are removed and the product is freeze-dried (Snyder, et al., 2012). However, there is currently limited evidence to support the use of AlloDerm for burn healing.

Lattari et al (1997) described the use of AlloDerm dermal grafts on 3 patients with full-thickness burns of the distal extremities. Grafts were applied to the hand in 2 cases and the dorsum of the foot in the 3rd case. Range of motion strength, fine motor coordination, and functional performance were quantitatively evaluated. As shown by these patients, cosmetic and functional results were considered good to excellent after the use of AlloDerm grafts with thin autografts.

Tsai et al (1999) presented 12 cases of clinical application of a composite grafting technique in which AlloDerm provided the source of dermis, and an ultra-thin autograft (0.004 to 0.006 inch in thickness) provided epidermis. In these patients, the composite grafts were applied to full-thickness burns covering various articular skin surfaces. The average skin take rate was 91.5%. These ultra-thin autografts allowed the donor sites to heal faster. The mean time of donor site epithelization was 6 days. All patients had a nearly normal range of joint motion (average 95% of normal) after 1 year follow-up. Wound assessment over time has shown supple skin that has been resistant to trauma and infection. Cosmetic results were judged to be fair to good by surgeons and patients after 1 year's follow-up.

Gore (2005) stated that because skin thins with advancing age, traditional thickness skin grafts cannot always be used in very elderly burn patients without creating a new full-thickness wound at the skin graft donor site. In an attempt to circumvent this problem, AlloDerm and thin autograft (depth 0.005 inches) were used in skin grafting 10 elderly burn patients (age of 78 years +/- 2, TBSA burn 17% +/- 2; mean +/- SEM) over a 1-year period. The outcome of patient receiving AlloDerm was compared retrospectively to a similar group of 18 elderly patients admitted over the prior year whom underwent operative wound excision and autografting (depth 0.014 inches) without AlloDerm. Length of hospital stay was significantly reduced in patients treated with AlloDerm compared to the total group of elderly in whom operative debridement and skin grafting was used. Functional outcome was improved in those patients who underwent skin grafting regardless of operative technique. Donor site healing time was significantly reduced with AlloDerm (12 days +/- 1 versus 18 days +/- 2), while graft take was similar to conventional autografting. Unfortunately, 3-mo mortality remained poor regardless of operative skin grafting or technique used. The authors concluded that these results suggested that use of AlloDerm may allow more elderly burn patients to undergo operative wound closure, thus improving functional outcome and reducing hospitalization. Unfortunately, long-term survival for very elderly burn patients remains poor.

A number of papers have examined the use of AlloDerm as a tissue graft for contaminated abdominal wall defects in hernia repair. Wound infection and infection of the mesh can be grave complications of hernia repair, often necessitating removal of the mesh and application of a tissue graft. In breast reconstruction, AlloDerm has been used in conjunction with a subpectoral (major) placement of breast implants to achieve more complete implant coverage without the use of muscles. Although these indications are promising, evidence is limited to small retrospective case series with limited follow-up.
Ventral hernia repair in potentially contaminated or potentially infected fields limit the use of synthetic mesh products. In this scenario, biosynthetic mesh products that are absorbed and/or replaced with the body's own tissue are intended to reduce the incidence of post-operative chronic wound complications. Rapid re-vascularization, re-population, and remodeling of the matrix occur on contact with the patient's own tissue. Only limited, and mostly preliminary data, are available on the use of these types of mesh and concerning the potential complications associated with the use of types of meshes.

In one of the few published comparative studies of AlloDerm in hernia repair, Gupta et al (2006) compared the efficacy of the complications associated with the use of AlloDerm and Surgisis bioactive mesh (Cook Surgical, Bloomington, IN) product obtained by the processing of porcine small intestine submucosa, for ventral herniorrhaphy. The investigators reported on the outcomes of 74 patients who underwent ventral hernia repair using these products between June 2 and March 2005. The first 41 procedures were performed using Surgisis bioactive mesh, and the remaining 33 patients underwent ventral hernia repair with AlloDerm. The investigators reported that the use of the AlloDerm mesh resulted in 8 hernia recurrences. Fifteen of the 33 patients treated with AlloDerm developed a diastasis or bulging at the repair site. Seroma formation was only a problem in 2 patients. The investigators reported that the Surgisis bioactive mesh resulted in significant seroma formation in over 25% of patients. Explanted material revealed separated layers of unincorporated middle layers of the Surgisis mesh. The investigators reported that 3 of the patients had the mesh placed in a contaminated field with no resultant sequela, and there were no hernia recurrences. Patients also had a significant discomfort and pain during the immediate post-operative period. The investigators concluded that post-operative diastasis and hernia recurrence were a major problem with the AlloDerm mesh. On the other hand, seroma formation was a major problem with the Surgisis mesh repair, as was the post-operative pain. The investigators recommended further design improvements in both forms of these new mesh products.

In another comparative study, Espinosa-de-los-Monteros et al (2007) retrospectively reviewed 39 abdominal wall reconstructions with AlloDerm in 37 patients and compared them with 39 randomly selected abdominal wall reconstructions without AlloDerm. The investigators reported a significant decrease in recurrence rates when AlloDerm was added as an overlay to primary closure plus rectus muscle advancement and imbrication in patients with medium-sized hernias. On the other hand, no differences were observed when adding AlloDerm as an overlay to patients with large-size hernias without underlay mesh.

Jin et al (2007) compared 2 techniques of fascial bridging versus fascial re-inforcement repair with regard to their local recurrence rates using AlloDerm in patients with abdominal wall defects, and concluded that, because of high recurrence rates with fascial bridging, AlloDerm should be used only as a re-inforcement after primary fascial re-apposition. Investigators retrospectively studied the outcomes of 37 patients with abdominal defects repaired with AlloDerm. Eight patients underwent bridged fascial repair, and 26 patients had reinforced fascial repair. Mean follow-up was 21.4 months (range of 15 to 36 months). In the bridged group, 1 patient died on post-operative day 20. Of the remaining 10 patients (80%) developed recurrences; 7 patients required re-operation, but 1 patient refused repair. In the reinforced group, 4 patients were lost to follow-up and 2 patients died. Four of the remaining 20 patients (20%) developed recurrences that required repair; this was significantly different from the recurrence rate in the bridged group (p = 0.009).

Bluebond-Lagner et al (2008) reported on recurrent laxity requiring secondary intervention in a series of patients with massive ventral hernias and identified 7 patients who presented with abdominal wall laxity following component separation with interpositional AlloDerm alone. The investigators reported that all patients developed laxity within 12 months and underwent secondary procedure. At the time of re-exploration, severe attenuation in the AlloDerm was noted. The segment was excised, the edges closed primarily, and polypropylene mesh was placed as an onlay.

Vetrees et al (2008) reported on a retrospective review of outcomes of surgical repair of 83 patients with open abdomen that were treated at Walter Reed Army Medical Center. Surgical management included early definitive abdominal closure (EDAC) (serial abdominal closure with prosthetic Gore-Tex Dualmesh and final closure supplemen...
with polypropylene mesh or Alloderm in 56 patients, primary fascial closure in 15 patients, planned ventral hernia (in 9 patients, and vacuum-assisted closure with Alloderm in 3 patients). Complications included removal of infecte prosthetic mesh in 4 EDAC closure patients; the investigators noted that mesh-related complications had decrease time. The investigators reported that rates of infection, abdominal wall hematoma, deep venous thrombosis, and pulmonary embolism did not differ between groups. In the EDAC group, infections complicated final polypropylene closure in 3 of 28 patients closed with prosthetic mesh; 1 of 14 patients closed with biologic mesh (Alloderm) noted increased laxity at the repair site. Of 56 patients treated with EDAC, 2 patients had recurrent ventral hernia. Of th patients closed with Alloderm and vacuum assisted closure, 1 patient had recurrent ventral hernia. The investigato reported that no final Alloderm closures required removal after placement, but "long-term results have been disappointing ... The excessive cost of biologic material requires better results than those documented in previous Limitations of this study include its lack of randomization, variation in the described closure methods, its retrospec nature, and limitations of some data points. The investigators concluded that "polypropylene mesh final EDAC clo infection and subsequent fistula formation, and long-term follow-up are needed. Use of biologic mesh as either fina closure or with vacuum-assisted closure also requires long-term follow-up to justify its increased cost and increase abdominal wall laxity."

Available published evidence regarding the use of Alloderm in breast reconstructive surgery consists primarily of s small case series (e.g., Salzberg, 2006; Breuing and Colwell, 2007; Zienowicz and Karacaoglu, 2007; Garramone a 2007; Spear et al, 2008). There are no comparative studies to determine whether the use of Alloderm improves a outcomes. In addition, the duration of follow-up in published studies is limited so the impact on longer-term compic such as severe contractures cannot be determined.

The only published comparative study of Alloderm (Preminger et al, 2008) in breast reconstructive surgery found t Alloderm did not increase the rate of tissue expansion after tissue expander placement. This matched, retrospectiv study compared expansion rates in patients who underwent tissue expander/implant reconstruction with Alloderm (versus persons who underwent standard tissue expander/implant reconstruction (n = 45). Median number of expa performed was 5 and 6 in the Alloderm and non-Alloderm cohorts (p = 0.117). The study found no difference in th rate of post-operative tissue expansion (Alloderm: 97 ml/injection versus non-Alloderm: 95 ml/injection [p = 0.907])

Randomized clinical studies are ongoing of Alloderm for tissue expander implant reconstruction and for other indic (MSKCC, 2009).

Hiles and colleagues (2009) noted that biologic grafts for hernia repair are a relatively new development in the wor surgery. A thorough search of the Medline database for uses of various biologic grafts in hernia shows that the evi behind their application is plentiful in some areas (ventral, inguinal) and nearly absent in others (para-stomal). The assumption that these materials are only suited for contaminated or potentially contaminated surgical fields is not b in the literature, with more than 4 times the experience being reported in clean fields and the average success rate higher (93 % versus 87 %). Outcomes prove to be dependent on material source, processing methods and implant scenarios with failure rates ranging from zero to more than 30 %. Small intestinal submucosa (SIS) grafts have an aggregate failure rate of 6.7 % at 19 months whereas acellular human dermis (AHD) grafts have a failure rate of 112 months. Chemically cross-linked grafts have much less published data than the non-cross-linked materials. In particular, the search found 33 articles for SIS, 32 for AHD, and 13 for cross-linked porcine dermis. Furthermore, t cumulative level of evidence for each graft material was fairly low (2.6 to 2.9), and only 1 material (SIS) had level 1 evidence reported in any hernia type (inguinal and hiatal).

Kissane and Itani (2012) studied the experience and outcomes of patients who underwent repair of a ventral incisi hernia with biologic mesh. Online database and detailed reference searches were conducted. Studies chosen for had a sample size of at least 40 patients, level IV evidence at most, and a Methodological Index for Nonrandomize Studies index of at least 10. Indications for use of biologic mesh, type of mesh, patient comorbidities, and surgical techniques were also noted. A total of 8 studies fulfilled the search criteria and included 635 patients using AlloD Surgisis, and Strattice biologic tissue matrices. In one study, indications and surgical techniques were standardize follow-up was prospective. In the other 7 studies, indications, surgical techniques, and follow-up were assessed

http://qawww.aetna.com/cpb/medical/data/200_299/0244_draft.html 01/28/2015
retrospectively. The mean patient age, when reported, was 55.7 years. Body mass index ranged from 30 to 35 kg 44 % of the reported patients. In 7 of the 8 studies [565 patients (89 %)], the mean follow-up was 25.8 months and mean hernia recurrence rate was 21 %. Complication rate exceeded 20 % in most studies. The authors concluded biologic tissue matrices are mostly used in contaminated fields, which has allowed for a 1-stage repair with no or li subsequent mesh removal. Ventral incisional hernia repair with these matrices continues to be plagued by a high recurrence rate and complications. They stated that prospective, randomized trials are needed to properly direct p the use of these meshes and evaluate their ultimate value.

Zeng et al (2012) evaluated the precise effectiveness of AlloDerm implants for preventing Frey syndrome after parotidectomy, using a systematic review and meta-analysis. These investigators searched randomized and quasi randomized controlled trials in which AlloDerm implants were compared to blank controls for preventing Frey syndr after parotidectomy, from the PubMed, Embase, the Cochrane Library and the ISI Web of Knowledge databases, w any language restriction. Two reviewers independently searched, identified, extracted data and assessed method quality. Relative risks with 95 % confidence intervals (CIs) were calculated and pooled. Five articles involving 409 met the inclusion criteria. Meta-analyses showed a significant 85 % relative risk reduction in objective incidence (R 0.15, 95 % CI: 0.08 to 0.30; p < 0.00001) and 68 % in subjective incidence (RR = 0.32, 95 % CI: 0.19 to 0.57; p < 0 of Frey syndrome with AlloDerm implants; there was a significant 91 % relative risk reduction in salivary fistula (RR 95 % CI: 0.01 to 0.66; p = 0.02); there was no statistical significance for the incidence of facial nerve paralysis (RR 95 % CI: 0.84 to 1.09; p = 0.51); there was no statistical significance for the incidence of seroma/sialocele (RR = 1 CI: 0.66 to 2.80; p = 0.40); there was a trend for a small effect in improving facial contour. Adverse events related AlloDerm implants were not found. There is evidence that AlloDerm reduces the incidence of Frey syndrome effic and safely, and also has the potential to improve facial contour and decrease salivary fistula. However, the author concluded that it is unclear whether AlloDerm implants improve facial contour and decrease other complications; th stated that further controlled evaluative studies incorporating more precise measures are required. Also, an UpTo review on “Salivary gland tumors: Treatment of locoregional disease” (Lydiatt and Quivey, 2012) does not mention of AlloDerm.

In a systematic review and meta-analysis, Li et al (2013) examined the safety and effectiveness of different types o for the prevention of Frey syndrome after parotidectomy. The following data bases were searched electronically: M (using OVID, from 1948 to July 2011), Cochrane Central Register of Controlled Trials (CENTRAL, issue 2, 2011), E (1984 to July 2011), World Health Organization International Clinical Trials Registry Platform (July 2011), Chinese BioMedical Literature Database (1978 to July 2011), and the China National Knowledge Infrastructure (1994 to Jul The relevant journals and reference lists of the included studies were manually searched for randomized controlled (RCTs) studying the effect and safety of different types of grafts for preventing Frey syndrome after parotidectomy. risk of bias assessment using Cochrane Collaboration’s tool and data extraction was independently performed by reviewers. The meta-analysis was performed using Review Manager, version 5.1. A total of 14 RCTs and 1,098 participants were included. All had an unclear risk of bias. The meta-analysis results showed that the use of an ac dermis matrix can reduce by 82 % the risk of Frey syndrome compared with the no-graft group using an objective assessment (relative risk [RR] 0.18, 95 % confidence interval [CI]: 0.12 to 0.26; p < 0.00001; Grading of Recommendations, Assessment, Development, and Evaluation [GRADE] quality of evidence: high). The acellular matrix can also reduce by 90 % the risk of Frey syndrome compared with the no-graft group using a subjective ass (RR 0.10, 95 % CI: 0.05 to 0.22; p < 0.00001; GRADE quality of evidence: high). The muscle flaps can reduce by risk of Frey syndrome compared with the no-graft group (RR 0.19, 95 % CI: 0.13 to 0.27; p < 0.00001; GRADE qua evidence: high). No statistically significant difference was found between the acellular dermal matrix and muscle fi groups (RR 0.73, 95 % CI: 0.15 to 3.53, p = 0.70; GRADE quality of evidence: low). No serious adverse events w reported. The authors concluded that the present clinical evidence suggests that grafts are effective in preventing syndrome after parotidectomy. Moreover, they stated that further RCTs are needed to confirm this conclusion and the safety of the grafts.

LifeCell also produces Repliform, which seems to be the same product as AlloDerm (Snyder, et al., 2012). Replifor Tissue Regeneration Matrix is a human acellular dermis. The donor human skin is processed and then freeze-drie
remove cells while maintaining the collagen, elastin, and proteoglycans. Repliform is processed by LifeCell Corp. a distributed by Boston Scientific Corp. The Boston Scientific Web site promotes Repliform for pelvic floor repair and "is intended for the repair or replacement of damaged or inadequate integumental tissue such to repair enteroceles rectoceles and/or cystoceles and for pelvic floor reinforcement."

Cymetra

Cymetra (Life Cell Corp., Branchburg, NJ) is an injectable micronized particulate form of AlloDerm that contains the collagens, elastin, proteins and proteoglycans that are present in AlloDerm (Snyder, et al., 2012). Like AlloDerm, is made from human allograft skin. Because of the small particle size, Cymetra can be delivered by injection as a minimvasive tissue graft. According to the manufacturer, Cymetra is ideally suited for the correction of soft-tissue defects requiring minimally invasive techniques, such as injection laryngoplasty.

Most of the published literature on Cymetra has focused on its use in injection laryngoplasty for vocal cord paralysis (see CPB 253 - Injections for Vocal Cord Paralysis), and its use in cosmetic soft tissue augmentation (Hirsch and C 2006; Narins and Bowman, 2005; Sclafani et al, 2002), with the remainder of the literature addressing miscellaneous applications (Allam, 2007; Levy, et al, 2005; Banta et al, 2003).

E-Z Derm

E-Z Derm Biosynthetic Wound Dressing (Brennen Medical, Inc., St. Paul, MN) is a porcine-derived xenograft that has been chemically modified to provide durability and storage. The dermal elements from the original pig dermis are likely deactivated in the chemical process, unlike the frozen pig dermis which is still available. It appears that the production of collagen scaffold.

E-Z Derm is a biosynthetic wound dressing made from porcine tissue chemically treated to cross-link collagen with aldehyde to add strength and allow storage at room temperature (Snyder, et al., 2012). Because E-Z Derm is composed of porcine tissue, it is considered a porcine xenograft. The shelf life is 18 months. The company Web site promotes E-Z Derm for the temporary coverage of wounds prior to autograft, partial thickness skin loss, to protect meshed autografts, for outpatient skin loss, donor sites, skin ulcerations, and abrasions.

EZ-Derm is a porcine dermis xenograft that is used as temporary coverage for skin loss injuries. It reduces pain, fluid and protein. It provides a barrier to external contamination and it provides a moist wound healing and thus protects underlying tissue in the treatment of burns, abrasions, donor sites, decubitus and chronic vascular ulcers. It can be any person except those who have a known sensitivity to porcine products, on patients with histories of multiple sepsis, allergies, on wounds with large amounts of eschar. As the wound heals, EZ-Derm will naturally slough off; as the dry edges may be trimmed off to avoid mechanical dislodgement (shearing). EZ Derm, all dermis porcine xenograft is supplied in rolls (3" wide by 12", 24" or 48" long). EZ Derm is also supplied in sheets, 7"x18" and patches, 3"x4" an Shelf life of EZ Derm is 18 months from date of manufacture, at room temperature storage.

E-Z Derm Biosynthetic Wound Dressing was cleared for marketing under the 510(k) process in July 1994. There is little evidence that the use of E-Z Derm is beneficial in wound healing. In a prospective, randomized trial (n = 32), H and Boorman (1989) compared E-Z Derm with Jelonet as a burn dressing in patients with partial skin thickness by bacterial colonization rate, need for surgical treatment, time for spontaneous healing, analgesic requirements and frequency of dressing changes were assessed in each group. No statistically significant differences were found be the 2 groups, for any of these factors.

In a controlled, prospective study (Vanstraelen, 1992), calcium sodium alginate and E-Z Derm were compared in treatment of split-thickness skin graft donor sites on 20 patients. Half of each donor site was dressed with each material. Time to complete healing, quality of regenerated skin and patient comfort were evaluated. Time to healing was 8.5 days with alginate and 11.3 days with E-Z Derm (p < 0.001). Quality of healed skin was consistently good with the alginate better than under E-Z Derm in 95% of patients (p < 0.001). Hypertrophic scarring was not observed under alginate dressings but occurred in 25% of E-Z Derm-dressed sites (p < 0.01). Furthermore, evidence was found that aller...
reactions to E-Z Derm could occur. Alginate was preferred by 75% of patients and none preferred E-Z Derm (p <
the remainder had no preference. The author concluded that E-Z Derm is inferior to calcium sodium alginate as a
for split-thickness skin donor sites.

Integra (Collagen-Glycosaminoglycan Copolymer)

Integra is a bilayered matrix wound dressing composed of a porous layer of cross-linked bovine tendon collagen a
glycosaminoglycan and a semipermeable polysiloxane (silicone) layer. Integra Dermal Regeneration Template, Inte
Bilayer Matrix Wound Dressing, and Integra Meshed Bilayer Wound Matrix (Integra LifeSciences Corporation, Plai
NJ) are identical products composed of an acellular, biodegradable collagen-glycosaminoglycan (C-GAG) copoly
coated with a thin silicone elastomer. Bovine type I collagen and chondroitin-6-sulfate, one of the major
glycosaminoglycans, are co-precipitated, freeze-dried and cross-linked. The collagen structure is manufactured,
size has been determined to maximize in-growth of cells, and the degree of cross-linking as well as GAG composit
designed to control the rate of matrix degradation. This extra-cellular matrix analog incorporates in approximately
weeks forming a neodermis with new vasculature. The Integra acellular cryo-preserved allodermis is clinically used
conjunction with ultra thin (0.003 to 0.006 inch) meshed split-thickness autografts in large burn wounds. According
the manufacturer, the silicone layer allows for controlled water vapor loss and provides a flexible covering for the w
surface. The collagen-glycosaminoglycan matrix is biodegradable and provides a scaffold for cell entry and capillar
growth. The silicone membrane is temporary and the collagen-glycosaminoglycan matrix is remodeled as the wou
is repaired. Integra can be stored at room temperature.

In April 2001, FDA approved Integra dermal regeneration template has received premarket approval from the FDA
post excisional treatment of life-threatening full-thickness or deep partial-thickness thermal injury where sufficient a
is not available at the time of excision or not desirable due to the physiological condition of the patient." Bilayer Ma
Wound Dressing was cleared for marketing under the 510(k) process in August 2002 and is indicated "for the mana
of wounds including partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic and
ulcers, surgical wounds (donor sites/grafts, post-Mohs surgery, post-laser surgery, podiatric, wound dehiscence), t
wounds (abrasions, lacerations, second-degree burns, and skin tears) and draining wounds. This device is intende
-time use."

Integra Meshed Bilayer Wound Matrix is an advanced wound care device comprised of a porous matrix of cross-lin
bovine tendon collagen and glycosaminoglycan with a polysiloxane (silicone) layer. It allows draining of wound ex
and provides a flexible adherent covering for the wound surface. The collagen-glycosaminoglycan biodegradable m
provides a scaffold for cellular invasion and capillary growth. It is indicated for the management of wounds includin
and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, surgical wound
sites/grafts, post-Mohs surgery, post-laser surgery, podiatric, wound dehiscence), trauma wounds (abrasions,
lacerations, second-degree burns, and skin tears) and draining wounds. It also may be used with negative pressur
therapy. The dosage is based on size of the wound for this single use product. Integra Meshed Bilayer Wound Mat
packaged in sterile, single-use, double peel packages containing phosphate buffer. It is available in four sizes: 500
centimeters (8'' x 10'' sheets), 250 square centimeters (4''x10'' sheets), and 125 centimeters (4''x5'' sheets), and 25
centimeters (2''x2'' sheets).

Stern et al (1990) stated that Integra artificial skin is an effective means of treatment for full-thickness burns. In this
histological study, serial biopsy specimens were obtained from 131 patients during a period of 7 days to 2 years af
application; 6 sequential phases of repair were discerned. Additionally, there were occasional unusual histological
features, eosinophilic infiltration, and/or macrophage-derived giant cell formation in the wound area; however, such
did not clinically correlate with a negative response to Integra. These investigators found that the use of Integra re
good repair, with rare exceptions. An intact dermis was achieved as well as definitive closure of a complete epider
layer with a minimum of scarring.

Dantzer and Braye (2001) presented a series of 31 patients who underwent Integra grafting for reconstructive surg
total of 39 operational sites. The average area grafted per procedure was 267 cm2. Complications (e.g., silicone
detachment, failure of the graft, and hematoma) were observed in 9 cases. The length of follow-up ranged from 0. years. Two patients (2 sites) were lost to follow-up; the final results in the remaining patients were considered to 28 cases, average in 6 cases and poor in 3 cases. The disadvantages of using Integra in reconstructive surgery a necessity of 2 operations, the risks of infection under the silicone layer, of the silicone becoming detached and of recurrence of contraction. On the other hand, Integra has many advantages including its immediate availability, the availability of large quantities, the simplicity and reliability of the technique, and the pliability and the cosmetic appe of the resulting cover.

Ryan et al (2002) examined retrospectively the mortality and length of stay (LOS) of 270 adults with acute burns gr than or equal to 20 % of body surface area (BSA), and determined the effect of Integra on outcome. No difference mortality was found between patients who received Integra (30 %; n = 43) and patients who did not (30 %; n = 227 Surviving Integra patients (n = 30) stayed longer, but they were more extensively injured than survivors who did no Integra (n = 158), and therefore longer hospitalizations were expected. In a sub-group analysis, mean LOS of Inte patients with 2 or more mortality risk factors (age over 60 years, burn size greater than 40 % BSA, or inhalation inju 15) was 63 days compared with 107 days in patients with 2 or more risk factors (n = 29) who did not receive Integr 0.014). The authors concluded that the use of Integra in severely injured burned adults was associated with a mar decrease in LOS.

In a post-approval study, Heimbach and associates (2003) assessed the safety and effectiveness of Integra involvi burn injury patients who were treated at 13 burn care facilities in the United States. The mean total body surface a burned was 36.5 % (range of 1 to 95 %). Integra was applied to fresh, clean, surgically excised burn wounds. Wit weeks, the dermal layer regenerated, and a thin epidermal autograft was placed. The incidence of invasive infectio Integra-treated sites was 3.1 % (95 % confidence intervals [CI]: 2.0 to 4.5%) and that of superficial infection 13.2 % % CI: 11.0 to 15.7 %). Mean take rate of Integra was 76.2 %; the median take rate was 95 %. The mean take rate epidermal autograft was 87.7 %; the median take rate was 98 %. The authors concluded that these findings furthe supported the conclusion that Integra is a safe and effective treatment modality in the hands of properly trained clin under conditions of routine clinical use at burn centers.

Heitland and colleagues (2004) stated that the clinical use of Integra has been celebrated enthusiastically as an improvement in burn therapy over a period of more than 10 years. Many case-reports have shown the positive eff the treatment with Integra as a skin substitute. In this study, these investigators examined the alterations of Integra in Germany. Fifteen German burn centers have been interviewed respectively over a time period of 6 years with in the years 1999, 2001, and 2003. The goal of this study was to focus on the problems associated with the use of skin and to create a manual for Integra-therapy including indication, pre-, intra-, and post-operative treatment. Sin first Integra Users seminar in Germany in 1999, repeated interviews have been conducted with 15 German burn ce The collected results of the last 6 years were evaluated. These results demonstrated a change in the indication fo therapy with artificial skin towards extensive full thickness burned patients and as extended indication especially fo traumatic reconstruction. This study provided guidelines for the usage and handling of Integra and showed that Int an important reconstructive dermal substitute for the severely burned or post-traumatic patients if it is handled by a surgeon in a correct way.

In a review on the use of Integra for full-thickness burn surgery, Fette (2005) stated that there are a lot more benef harms for patients. Some of the potential benefits include no histological or immunological harms, better scar app less hypertrophic scarring, less itching, better movements, thinner epidermal grafts and smaller meshes possible, immediate availability, and prolonged shelf time. Potential harms include inability to replace both dermal and epide components, as well as the need for sequential operative procedures.

Integra Flowable Wound Matrix (LifeSciences Corp., Plainsboro, NJ) was cleared through the FDA 510(k) process It is comprised of granulated cross-linked bovine tendon collagen and glycosaminoglycan. The granulated collage glycosaminoglycan is hydrated with saline and applied in difficult to access wound sites and tunneled wounds via i with a syringe. It is indicated for the management of wounds including partial and full-thickness wounds, pressure venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds (e.g., dono
sites/grafts, post-Mohs surgery, post-laser surgery, podiatric, wound dehiscence), trauma wounds (e.g., abrasions, lacerations, second degree burns, skin tears) and draining wounds; however, there is insufficient scientific evidence regarding its effectiveness for these or any other indications.

Integra Matrix Wound Dressing is comprised of a porous matrix of cross-linked bovine tendon collagen and glycosaminoglycan. The collagen-glycosaminoglycan biodegradable matrix is intended to provide a scaffold for cell invasion and capillary growth. The Integra Matrix Wound Dressing was cleared by the FDA for use in the management of wounds including: partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds (donor sites/grafts, post-Mohs surgery, post-laser surgery, wound dehiscence), trauma wounds (abrasions, lacerations, second-degree burns, skin tears) and draining wounds. However, there is insufficient scientific evidence regarding its effectiveness for these or any other indications.

TissueMend®

TissueMend (TEI Biosciences Inc., Boston, MA), marketed by Stryker Orthopaedics (Stryker Howmedica Osteonic Kalamazoo, MI), is a remodelable collagen matrix derived from bovine skin intended for reinforcement of soft tissue repaired by sutures or suture anchors during tendon repair surgery, including reinforcement of the rotator cuff, patellar tendons, biceps, quadriceps, or other tendons. There is a lack of evidence in the peer-reviewed medical literature to support its clinical effectiveness.

Veritas® Collagen Matrix

Veritas Collagen Matrix (Synovis Surgical Innovations, St. Paul, MN) was cleared by the FDA via the 510(k) process in 2000. It is an implantable surgical patch comprised of non-crosslinked bovine pericardium. Veritas Collagen Matrix undergoes proprietary processing that allows neo-collagen formation and neo-vascularization of the implanted deviates replacement of the device with host tissue, or remodeling. Veritas Collagen Matrix is intended for use as an implant for the surgical repair of soft tissue deficiencies, this includes but is not limited to the following: (i) buttress reinforcing staple lines during lung resection (e.g., wedge resection, blebectomy, lobectomy, bullaectomy, bronchial resection, segmentectomy, pneumonectomy/pneumectomy, pneumoreduction) and other incisions and excisions of lung and bronchus; (ii) reinforcement of the gastric staple line during the bariatric surgical procedures of gastric banding; and (iii) abdominal and thoracic wall repair, muscle flap reinforcement, rectal and vaginal prolapse urinary incontinence treatment, reconstruction of the pelvic floor, and repair of hernias (e.g., diaphragmatic, femoral incisional, inguinal, lumbar, paracolostomy, scrotal, umbilical). Veritas Collagen Matrix received an additional 510(k) clearance by the FDA in 2006 and is intended to minimize tissue attachment to the device in case of direct contact with viscera. There is insufficient scientific evidence regarding the effectiveness of Veritas Collagen Matrix for use as a for the surgical repair of soft tissue deficiencies or for any other indication.

NeuroMatrix™—Collagen Nerve Cuff and NeuroMend™—Collagen Nerve Wrap

Peripheral nerves possess the capacity of self-regeneration after traumatic injury. Transected peripheral nerves can be bridged by direct surgical coaptation of the 2 nerve stumps or by interposing autografts or biological (veins) or synthetic nerve conduits. Nerve conduits are tubular structures that guide the regenerating axons to the distal nerve stump. Synthetic nerve conduits were primarily made of silicone because of the relative flexibility and biocompatibility. Nerve conduits are now made of biodegradable materials such as collagen, aliphatic polyesters, or polyurethanes (Pfister 2007). Studies are in progress to assess the long-term biocompatibility of these implants and their effectiveness in reconstruction.

According to the Collagen Matrix, Inc. (Franklin Lakes, NJ) website, NeuroMatrix is a resorbable, semi-permeable based tubular matrix that provides a protective environment for peripheral nerve repair after injury and creates a conducive axonal growth across a nerve gap. The device slowly resorbs in vivo. The device is engineered from highly purified collagen fibers and are composed of dense fibers for mechanical strength. Collagen Nerve Cuff was cleared by the FDA via the 510(k) process in September 2001. It is intended for use in repair of peripheral nerve discontinuities where
closure can be achieved by flexion of the extremity; however, there is insufficient scientific evidence regarding its effectiveness for peripheral nerve repair or for any other indication.

NeuroMend (Collagen Matrix, Inc., Franklin Lakes, NJ) is a resorbable, collagen-based rolled membrane matrix intended for use in the management of peripheral nerve injuries in which there has been no substantial loss of nerve tissue. The same technological characteristics as NeuroMatrix. Collagen Nerve Wrap was cleared by the FDA via the 510k process on July 14, 2006; however, there is insufficient scientific evidence regarding its effectiveness for peripheral nerve repair or for any other indication.

TenoGlide™ Tendon Protector Sheet

TenoGlide tendon protector sheet (Tendon Wrap tendon protector, Integra LifeSciences Corp., Plainsboro, NJ) was cleared through the FDA 510k process in 2006. It is an absorbable implant that provides a non-constricting, protective encasement for injured tendons and is comprised of a porous matrix of cross-linked bovine Type I collagen and glycosaminoglycan. According to the manufacturer’s website, TenoGlide provides a protective biocompatible interface which provides a protective environment and gliding surface while the tendon is healing (e.g., tendons damaged by compression from trauma or after primary repair). However, there is insufficient scientific evidence regarding its effectiveness for tendon repair or for any other indications.

SurgiMend®

SurgiMend (TEI Biosciences, Boston, MA) was cleared through the FDA 510k process in 2007. It is an acellular tissue matrix derived from fetal bovine dermis and is intended for implantation to reinforce soft tissue where weakness exists and for the surgical repair of damaged or ruptured soft tissue membranes. According to the 510k letter to the manufacturer, it is specifically indicated for plastic and reconstructive surgery, muscle flap reinforcement, hernia repair (e.g., abdominal, inguinal, femoral, diaphragmatic, scrotal, umbilical, and incisional hernias), reinforcement of soft tissue repaired by sutures or suture anchors, during tendon repair surgery, including re-inforcement of the rotator cuff, patellar, Achilles, biceps, quadriceps, or other tendons. It is not intended to replace normal body structure or provide the full mechanical strength to support tendon repair of the rotator cuff, patellar, Achilles, biceps, quadriceps or other tendons. Sutures used to repair the tear and sutures or bone anchors used to attach the tissue to the bone provide biomechanical strength for the tendon repair.

There is insufficient scientific evidence regarding the effectiveness of SurgiMend for use as an implant for the surgical repair of soft tissue deficiencies or for any other indications. There are few published reports of SurgiMend (Cheng Cyr, 2012). Endress, et al. (2012) reported on a retrospective comparison of 49 breast reconstructions in 28 patients with SurgiMend with 123 reconstructions in 91 patients without the use of a graft. The study found no significant difference in overall complication rates in the group managed with SurgiMend (20.8%) versus the group managed without use of a graft (13.0%). The authors reported that the duration of drainage was significantly shorter in the group managed with SurgiMend (8.5 days) versus the comparison group (11 days). Gaster, et al. (2013) reported on a prospective study of 17 breast reconstructions in 12 patients with SurgiMend. The authors reported that SurgiMend demonstrated a very infrequent inflammatory response. The authors stated that further studies are needed to characterize the molecular mechanisms underlying tissue incorporation of this product.

Gammagraft Skin Substitute

Gammagraft (Promethean LifeSciences, Inc., Pittsburgh, PA) is an irradiated human skin allograft acquired from cadavers. According to the manufacturer, its main applications are as a temporary graft for treating burns, partial and full-thickness wounds, and chronic wounds including venous stasis ulcers, diabetic foot ulcers, and full-thickness wounds (Promethean LifeSciences, 2008). The manufacturer states that Gammagraft has both the epidermal and dermal layers of human skin which makes it more durable and effective as a vapor barrier than most wound covers especially some artificial skins, which lack the keratinocyte layer that is found in the epidermis. The manufacturer states that the irradiation process that Gammagraft undergoes produces 2 key advantages: the irradiation acts as a preservative.
and sterilization agent significantly reducing any risk of viral transmission of disease and allowing Gammagraft to be stored at room temperature for up to 2 years. The graft is stored in an aluminum foil package and preserved in a penicillin/gentamycin solution. The manufacturer explains that the ability to store GammaGraft at room temperature for up to 2 years makes GammaGraft readily available for use upon opening a foil pack, without the need for thawing, cle and rehydration. The manufacturer also states that GammaGraft can be applied in a clinical setting without incurring operating room time for application. To use GammaGraft, the wound area is debrided, the graft is placed and a nonadherent dressing is applied, followed by a gauze dressing (Snyder, et al., 2012).

According to the manufacturer, for years, cadaver derived allograft skin has been the gold standard in the treatme of wounds and burns. For this reason, all bioengineered grafts have attempted to replicate the performance of allograft and in this sense are "skin substitutes," whereas GammaGraft is human skin allograft. However, some allografts (i GammaGraft) are mislabeled as "skin substitutes." Allografts differ in structure, tissue origin, and in some cases, di bioengineered "skin substitutes" in terms of how they are approved by the FDA. Both GammaGraft and Alloskin, ar cadaver skin that has simply been preserved. They are regulated by the FDA as human tissue for transplantation a devices. Other products regulated under the same regulations do not retain the original structure of the donor skin fact, still other products are of bovine or porcine origin and may or may not be combined with synthetic materials.

There is a lack of evidence in the peer-reviewed published medical literature on the safety and effectiveness of Gammagraft Skin Substitute.

Artiss

Artiss (Baxter Healthcare Corp., Deerfield, IL), a slow-setting fibrin sealant consisting of human fibrinogen and low concentration human thrombin, received FDA approval in March, 2008 for use in attaching skin grafts onto burn pa without the use of staples or sutures. Artiss sets in approximately 60 seconds as opposed to rapid-setting fibrin se which set in 5 to 10 seconds. This gives the physician additional time to position the skin graft over a burn before t starts to adhere to the skin. The sealant is available in a pre-filled syringe (frozen) formulation and a lyophilized fo dosage forms, once prepared and ready to use, can be sprayed, thus enabling application in a thin and even layer.

The FDA approved Artiss based on the results of a phase III study. The multi-center, prospective, randomized, co study (Foster et al, 2008) compared the use of Artiss to staples in 138 burn patients requiring skin grafting. Patient burn wounds measuring less than or equal to 40 % of total body surface area with 2 comparable test sites measuri between 1 and 4 % total body surface area each. Wound closure at day 28 was assessed using test site planimet review of day 28 photographs by 3 independent blinded evaluators (primary endpoint analysis). Secondary efficac measures included hematoma/seroma on day 1, engraftment on day 5, and wound closure on day 14. Investigato patient-reported outcomes were also assessed. The proportion of test sites with complete wound closure at day 2 70.3 % in Artiss treated sites and 65.8 % in staples, as assessed by planimetry. Blinded review of day 28 photographs confirmed that the rate of complete wound closure was similar between the 2 treatments, although the assessed rates of closure were lower than those determined by planimetry: Artiss (43.3 %) and staples (37.0 %). lower limit of the 97.5 % CI of the difference between Artiss and staples was -0.029, which is above the pre-defined inferiority margin of -0.1. Therefore, Artiss is at least as efficacious as staples at the 97.5 % 1-sided level for comp wound closure by day 28. Hematoma/seroma on day 1 occurred at significantly (p < 0.0001) fewer Artiss-treated s (29.7 % [95 % CI: 22.2 to 38.1 %]) compared with staples (62.3 % [95 % CI: 53.7 to 70.4 %]). Engraftment on day 1 was deemed to be 100 % in 62.3 % (95 % CI: 53.7 to 70.4 %) of the Artiss-treated sites and 55.1 % (95 % CI: 46.4 %) of the staples treated by day 14 occurred in 48.8 % (95 % CI: 39.9 to 57.8) the Artiss-treated sites and 42.6 % (95 % CI: 34.0 to 51.6 %) of the stapled sites (p = 0.2299). Artiss scored better staples for all investigator-assessed outcomes (e.g., quality of graft adherence, preference for method of fixation, satisfaction with graft fixation, and overall quality of healing). Likewise, Artiss scored significantly better than stap patient-assessed outcomes (e.g., quality of skin treatment preference). The safety profile of Artiss was ex as indicated by the lack of any related serious adverse experiences. The authors concluded that Artiss is safe and for attachment of skin grafts with outcomes at least as good as or better than staple fixation.
Permacol Biologic Implant

Permacol Biologic Implant, also known as Permacol Surgical Implant (Covidien, Mansfield, MA), received FDA 510 marketing clearance in March 2005. It is composed of acellular cross-linked porcine dermal collagen and is intended as dermal scaffold for soft tissue surgical repairs, including hernia repair, muscle flap reinforcement, rectal prolapse (intussusception), rectocele repair, abdominal wall defects, plastic and reconstructive surgery, and complex abdominal repair. According to the manufacturer, Permacol is bio-compatible and eventually becomes vascularized enabling incorporation into host tissue with associated cell and microvascular ingrowth.

Armellino et al (2006) described 6 cases of complicated incisional hernia repairs using Permacol. In 1 woman the hernia was associated with an enterovaginal fistula. Three cases presented severe wound infections, 2 of which required prior polypropylene mesh repair, while another had an irreducible recurrent incisional hernia and 1 woman presented with complete evisceration. None of the patients had post-operative or porcine-graft-related complications. Over a follow-up period of 3 to 24 months no recurrence or wound infection were reported.

Parker et al (2006) reported the results of Permacol in the repair of complicated abdominal wall defects in a retrospective review of medical records (n = 9). Indications for surgery included re-operative incisional hernia repair after removal of infected mesh (n = 3), reconstruction of a fascial defect after resection of an abdominal wall tumor (n = 2), incision repair in a patient with a previous abdominal wall infection after a primary incisional hernia repair (n = 1), incisional repair in a patient with an ostomy and an open midline wound (n = 1), emergent repair of incisional hernia with stra bowel and multiple intra-abdominal abscesses (n = 1), and excision of infected mesh and drainage of intra-abdominal abscess with synchronous repair of the abdominal wall defect (n = 1). At a median follow-up of 18.2 months, 1 recurrent hernia existed after intentional removal of the Permacol. This patient developed an abdominal wall abscess 7 months post hernia repair secondary to erosion from a suture. Overall, 1 patient developed exposure of the Permacol after a suture dehiscence. The wound was treated with local wound care, and the Permacol was salvaged. Despite the presence of contamination (wound classification II, III, or IV) in 5 of 9 patients (56%), no infectious complications occurred.

In a retrospective review, Mitchell et al (2008) compared outcomes of congenital diaphragmatic hernia (CDH) repair using synthetic Gore-Tex (W. L. Gore and Associates, Neward, DE) to bioprosthetic Permacol (Tissue Science Laboratory, Andover, MA). Primary repair was performed in 63 patients and patch repair in 37 patients, divided between Gore-Tex (n = 29) and Permacol (n = 8). Overall recurrences were 1 (2%), 8 (28%), and 0 in the primary, Gore-Tex, and Permacol groups, respectively. Median follow-up was 57 months for Gore-Tex and 20 months for Permacol. Median time to recurrence in the Gore-Tex group was 12 months, with no Permacol recurrences. Both the Gore-Tex and Permacol had similar co-morbidities, including prematurity, congenital heart disease (76% and 63%, respectively), and the need for extracorporeal membrane oxygenation support (38% and 25%). The authors concluded that Permacol may have lower recurrence rates compared to Gore-Tex and is a promising alternative biologic graft for CDH repair.

Hsu et al (2008) reported the results of a retrospective review of all patients in a single institution who underwent consecutive abdominal wall reconstruction with Permacol during 2006 (n = 28). Factors evaluated were body mass index, relevant co-morbidities, etiology of hernia, hernia defect size based on CT scan and intra-operative measurement, Permacol implant, length of hospital stay, and post-operative complications. Surgical technique was standardized and involved a single layer of acellular porcine dermis as a subfascial "underlay" graft under moderate tension upon maximal hernia reduction. Tissue expanders were not required for skin closure. Mean intra-operative hernia was 150cm² (range of 10cm² to 600cm²). Mean age was 55 years with an average body mass index (BMI) of 34 (BMI of 61.4). Defects were attributed to either a previous laparotomy incision or open abdomen. Mean hospital stay was 9.67 days. At a mean follow-up of 16 months, there were 3 recurrent hernias (10.7%) based on physical examination and post-operative CT scan evaluation. One patient developed a superficial wound dehiscence, which was successfully treated with local wound care, and 1 patient developed a cellulitis, which was successfully treated with antibiotic therapy. Patients (14.3%) developed a chronic, non-infected fluid collection lasting greater than 1 month that later resolved. Patient required removal of the implant due to infection. The authors concluded that Permacol can be used in the...
reconstruction of both small and large ventral hernias and that the biodegradable matrix serves as a safe and useful alternative to both synthetic mesh and AlloDerm.

Saray (2003) reported the feasibility of Permacol for facial contour augmentation (n = 8). It was used as a filler implant for reconstruction of post-traumatic soft-tissue defects, correcting post-parotidectomy hollowing and secondary nasal septum to cover ossecartilaginous irregularities. However, the author reported a potential risk of inflammation and skin contractures in thin-skinned patients when implants were placed superficially.

Data from case reports suggest that Permacol is a promising dermal scaffold for soft tissue surgical repairs however, is insufficient evidence of its effectiveness as an alternative to synthetic meshes and information on the potential complications associated with its use is lacking.

DermaClose RC Continuous External Tissue Expander

The DermaClose RC Continuous External Tissue Expanders are sterile, single-patient use skin anchors that are made of 316L surgical stainless steel. These skin anchors are placed about 1.5 cm from the edge of the wound, and they push the skin to 4.5 mm into the subcutaneous tissue, and are held in place with 2 standard skin staples. Once the anchor is in place, the line from the DermaClose tension controller is attached around each skin anchor and the knob of the tensioning device is rotated until a clutch mechanism provides an audible indication that full tension has been achieved. The DermaClose now automatically maintains the proper amount of tension to gently stretch the skin on the subcutaneous planes around the wound until the edges of the wound are brought close enough together for final suturing and closure. There is insufficient evidence regarding the effectiveness of DermaClose Continuous External Tissue Expander.

Artelon

Artelon (polyurethane urea elastomer) is a degradable biomaterial that serves as a scaffold for tissue ingrowth and provides temporary support for healing tissue. Gisselhäll et al (2002) described the synthesis, wet spinning, mechanical testing, and degradation of poly(urethane urea)s (PUURs) intended for clinical use in anterior cruciate ligament (ACL) reconstruction. The effects of soft segment chemical composition and molar mass and the kind of diamine chain end on the material properties were investigated. It was found that the fibers made of PUUR with polycaprolactone diol (PCL530) as soft segment and MDI/1,3-DAP as hard segment (PCL530-3) have high tensile strength and high modulus and when degraded keep their tensile strength for the time demanded for the application. The authors concluded that from a chemical and mechanical point of view PUUR fibers of PCL530-3, Artelon, are suitable for designing a degradable device.

Nilsson et al (2005) stated that a new spacer for the trapezio-metacarpal joint (TMC) based on a biological and tissue preserving concept for the treatment of TMC osteoarthritis (OA) has been evaluated. The purpose was to combine spacing effect with stabilization of the TMC joint. Artelon (Artimplant AB, Sweden) TMC Spacer is synthesized of a degradable polyurethaneurea (Artelon), which has been shown to be biocompatible over time and currently is used in ligament augmentation procedures. Fibers of the polymer were woven into a T-shaped device in which the vertical sections separate the bone edges of the TMC joint and the horizontal portion stabilizes the joint. A total of 15 patients with disabling pain and isolated TMC OA were included in the study; 10 patients received the spacer device and the remaining 5 patients (control group) were treated with a trapezium resection arthroplasty with abductor pollicis longus (APL) stabilization. Median ages of the 2 groups were 60 and 59 years, respectively. Pain, strength, stability, and range of motion were measured before and after surgery. Radiographical examination was performed in all patients before and after surgery. Follow-up evaluation 3 years after surgery, an unbiased observer evaluated all patients. Biopsy specimens were obtained from 1 patient 6 months after surgery. All patients were stable clinically without signs of synovitis. In both groups, patients were pain-free. The median values for both key pinch and tripod pinch increased compared with before surgery in the spacer group but not in the APL group. The biopsy examinations showed incorporation of the device in the surrounding bone and the surrounding connective tissue. No signs of foreign-body reaction were seen. The author concluded that the findings in this study showed significantly better pinch strength after Artelon TMC Spacer implantation compared with APL arthroplasty. This was a small retrospective study; its findings need to be validated in a larger study.
Huss et al (2008) stated that full thickness skin wounds in humans heal with scars, but without regeneration of the A degradable PUUR, Artelon is already used to reinforce soft tissues in orthopedics, and for the treatment of osteo of the hand, wrist, and foot. These researchers performed in vitro experiments followed by in vivo studies to exam PUUR is biocompatible and usable as a template for dermal regeneration. Human dermal fibroblasts were culture discs of PUUR, with different macrostructures (fibrous and porous). They adhered to and migrated into the scaffold produced collagen. The porous scaffold was judged more suitable for clinical applications and 4 mm Artelon, 2 m discs of porous scaffold (12 % w/w or 9 % w/w polymer solution) were inserted intradermally in 4 healthy human volunteers. The implants were well-tolerated and increasing ingrowth of fibroblasts was seen over time in all subje fibroblasts stained immunohistochemically for procollagen and von Willebrand factor, indicating neocollagenesis a angiogenesis within the scaffolds. The authors concluded that PURR scaffold may be a suitable material to use as template for dermal regeneration.

Currently, there is insufficient evidence to support the use of Artelon for ACL reconstruction, rotator cuff repair, TM osteoarthritis, and other indications.

TheraSkin

TheraSkin (Soluble Systems, Newport News, VA) is a biologically active, cryopreserved human skin allograft with epidermis and dermis layers. It is similar to living skin equivalent (LSE) and provides a supply of living cells, fibrob keratinocytes and a fully developed extracellular matrix (Snyder, et al., 2012). However, TheraSkin is a minimally manipulated allograft and contains a larger quantity of collagens compared to living skin equivalent. TheraSkin doe contain any synthetic or animal materials. According to the manufacturer, TheraSkin is designed to promote woun by providing cellular and extracellular components with growth factors, cytokines and collagen and to be a natural b infection. TheraSkin may be used in diabetic foot ulcers, venous stasis ulcers, and pressure ulcers. TheraSkin is r by the FDA as a human cellular and tissue based product. The FDA generally permits products regulated solely as tissue to be commercially distributed without premarket clearance or approval. TheraSkin is marketed by Soluble and tissue is provided by the Skin and Wound Allograft Institute (SWAI, Virginia Beach, VA), a wholly owned subsid LifeNet Health, Inc.

TheraSkin is cryopreserved human skin procured from consented and screened tissue donors that is used to provi physiological and mechanical barrier that reduces environmental contamination and assists in the promotion of gra tissue and epithelialization. The finished allograft is between 0.2 to 0.5 mm in thickness and contains both human e and dermis tissues. The product is provided in a meshed form at a 1:1.5 ratio. TheraSkin contains: 1) both collage elastin which provide structural support and resilience, 2) a compliment of growth factors to assist healing, 3) multip cytokines that assist in epithelialization and modulate the proliferation and differentiation of epithelium, and 4) struc that allow phagocytosis of bacteria without requirement of antibody production. TheraSkin is most commonly used treatment of partial and full-thickness wounds including chronic wounds, pressure ulcers, diabetic foot ulcers, veno ulcers and burns. TheraSkin is generally applied like an autograft, insuring that the dressing is in close contact with wound surface and that shear is minimized. According to the manufacturer, clinical experience supports up to five w bi-weekly applications of cryopreserved human skin allograft to close the wound to the point of treatment with non-wound dressings or to prepare the wound bed for autograft.

Landsman et al (2010) evaluated the safety and efficacy of TheraSkin in a retrospective study of 188 patients with diabetic foot ulcer (n = 54) or a venous leg ulcer (n = 134). Multi-variate logistic regression was used to evaluate t relationship between baseline wound size and the proportion of healed wounds after 12 and 20 weeks from initial a application. The authors found that by the 12th week, diabetic foot ulcers closed 60.38 % of the time and venous l closed 60.77 % of the time. After 20 weeks, the number of closed diabetic foot ulcers increased to 74.1 % and the of venous leg ulcers increased to 74.6 %. The mean wound size in the diabetic foot ulcer group was 6.2cm² (± 11.11.8cm² (± 22.5) in the venous leg ulcer group. The mean number of TheraSkin allografts required ranged from 1 an average of 2.03 (± 1.47) at the 12-week point and an average of 3.23 (± 2.77) at the 20-week point. Multi-varia
regression was used to calculate the odds of wound healing by week 12 and week 20 in each group. No adverse events related to TheraSkin were reported.

Other references provided by the manufacturer of TheraSkin are to studies that are either unpublished or are in journals indexed by the National Library of Medicine MEDLINE database of peer-reviewed journals (Soluble Systems, 2011a, 2011b; Budny and Ley, 2013; Treadwell, 2011; DiDomienico, et al., 2011).

A draft guideline by the National Institute for Health and Clinical Excellence (NICE) on the use of skin substitutes in inpatient management of diabetic foot problems stated that the evidence for the clinical effectiveness of wound dressing treatments for diabetic foot problems was of low quality and that only low-quality evidence on dermagraft and graftskin demonstrated positive effects on complete wound healing (at least 50% wound closure). However, no positive effect was demonstrated on the critical outcome (reduction in amputation). Furthermore, the guideline stated that in the absence of strong evidence on particular wound dressings, clinicians should use the wound dressings with the lowest acquisition cost into account their clinical assessment of the wound, the experience and preferences of the patient, and the clinical circumstances. In addition, the draft guideline stated that the use of skin substitute treatments for the inpatient management of diabetic foot problems should only be offered as part of a clinical trial (NICE, 2011).

Hyalomatrix

Hyalomatrix (Anika Therapeutics, Inc., Bedford, MA, formerly Fidia Advanced Biopolymers, Abano Terme, Italy) is a bilayered wound dressing composed of a nonwoven pad made of a benzyl ester of hyaluronic acid (HYAFF 11) and a semipermeable silicone membrane (Snyder, et al., 2012). The nonwoven pad contacts the wound and, according to the manufacturer, "provides a three dimensional matrix for cellular invasion and capillary growth." The silicone membrane "controls water vapor loss, provides a flexible covering for the wound surface, and adds increased tear strength to the device." The HYAFF 11 matrix is biodegradable. The company believes that "when the integration of the HYAFF b material in the newly formed dermal matrix has progressed, a well-vascularized granulation tissue forms. This promotes wound closure via spontaneous re-epithelialization or acts as a suitable dermal layer for skin grafting."

Hyalomatrix KC Wound Dressing was cleared for marketing under the 510(k) process in July 2001 for "the management of wounds in the granulation phase such as pressure ulcers, venous and arterial leg ulcers, diabetic ulcers, surgical second degree burns, skin abrasions, lacerations, partial-thickness grafts and skin tears, wounds and burns treated with meshed grafts. It is intended for use as a temporary coverage for wounds and burns to aid in the natural healing process."

The FDA 510(k) database shows that the 510(k) refers to Laserskin Dressing as the device; however, in the 510(k) summary of the proprietary name is Hyalomatrix KC Wound Dressing and the name Laserskin is not mentioned (Snyder, et al., 2011).

Hyalomatrix PA is a bilayered, sterile, flexible, and conformable non-woven pad entirely composed of HYAFF 11, a benzyl ester of hyaluronic acid. The hyaluronic acid is derived from bacterial fermentation. The HYAFF 11 serves as a scaffold cell colonization and capillary growth. On the back layer of the HYAFF 11 is a semipermeable silicone membrane that does not contact the patient and controls water vapor loss. Hyalomatrix PA is applied directly to a wound. After two weeks the silicone layer is removed, but the HYAFF II layer is mostly or completely absorbed into the underlying tissue typically has healed or has become ready for grafting. Hyalomatrix PA is packaged in several sizes: 5 cm x 5 cm sold separately and in boxes of 5 and 10 (in individual pouches); 10 cm x 10 cm sold separately; 10 cm x 20 cm sold separately.

Hyalomatrix PA Wound Dressing was cleared for marketing under the 510(k) process in December 2007. The company refers to Hyalomatrix PA by its trade name Hyalomatrix. In the 510(k) documents Hyalomatrix is described as a bilayered dressing composed of a nonwoven pad made of HYAFF 11 and a semipermeable silicone membrane. Hyalomatrix indicated for the management of wounds including: partial and full-thickness wounds; second-degree burns; pressure ulcers; venous ulcers; diabetic ulcers; chronic vascular ulcers; tunneled/undetermined wounds; surgical wounds (dorsal grafts, post-Mohs surgery, post-laser surgery, podiatric, wound dehiscence); trauma wounds (abrasions, lacerations, skin tears); and draining wounds. The device is intended for one-time use. The predicate device was "Hyalomatrix (Laserskin) Wound Dressing."
Jaloskin (Anika Therapeutics, Inc., Bedford, MA) was cleared for marketing under the 510(k) process in January 2010 for the management of superficial moderately exuding wounds including pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, surgical wounds (donor sites/grafts, post-Mohs surgery, post-laser surgery, podiatric, wound dehiscence), trauma wounds (abrasions, lacerations, skin tears) and first and second degree burns. Jaloskin is a semipermeable, transparent film dressing, composed of HYAFF 11 only. The hyaluronic acid is derived from bacterial fermentation. Anika Therapeutics, Inc. (Bedford, MA), acquired Fidia Advanced Biopolymers S.r.l. (currently Anika Therapeutics S.r.l.) in December 2009. The Anika Therapeutics Web site advertises Hyalomatrix and Jaloskin.

Caravaggi, et al.. (2003) reported on a total of 79 patients with diabetic dorsal (n = 37) or plantar (n = 42) ulcers we randomized to either the control group with nonadherent paraffin gauze (n = 36) or the treatment group with HYAFF autologous dermal and epidermal tissue-engineered grafts (n = 43). Weekly assessment, aggressive debridement, infection control, and adequate pressure relief (fiberglass off-loading cast for plantar ulcers) were provided in both groups. Complete wound healing was assessed within 11 weeks. Safety was monitored by adverse events. The investigators reported that complete ulcer healing was achieved in 65.3% of the treatment group and 49.6% of the control group, a difference that was not statistically significant (p = 0.191). Plantar foot ulcer healing was not statistically significant different (55% and 50%) in the treatment and control groups, but dorsal foot ulcer healing was significantly different (67% in the treatment group and 31% in the control group (p = 0.049).

Uccioli, et al. (2011) evaluated the efficacy of a HYAFF autograft in the treatment of diabetic foot ulcers compared to standard care in 180 patients with dorsal or plantar diabetic foot ulcers (unhealed for ≥1 month). Subjects were randomized to receive Hyalograft-3D autograft first and then Laserskin autograft after 2 weeks (n = 90; treatment group) or nonparaffin gauze (n = 90; control group). The primary efficacy outcome was complete ulcer healing at 12 weeks. Wound debridement, adequate pressure relief, and infection control were provided to both groups. There was no significant difference between treatment and control groups in the primary efficacy outcome: at 12 weeks, complete ulcer healing was similar in both groups (24% of treated vs 21% controls).

AmnioShield Amniotic Tissue Barrier

AmnioShield amniotic tissue barrier (Alphatec Spine, Carlsbad, CA) is an amniotic membrane-based implantable barrier to prevent/reduce scar tissue formation. There is a lack of evidence regarding the effectiveness of the AmnioShield as a tissue barrier.

Conexa Reconstructive Matrix

Conexa reconstructive matrix (Tornier, Inc., Edna, MN) is a porcine dermis tissue substitute that is cleared through the 510(k) process as LifeCell Tissue Matrix (LTM) Surgical Mesh (LifeCell Corporation, Branchburg, NJ). According to the manufacturer (2008), the matrix is intended for the reinforcement of soft tissue repaired by sutures or suture anchors during tendon surgery including re-reinforcement of Achilles, biceps, patellar, quadriceps, rotator cuff, or other tendons. Indications for use include the repair of body wall defects that require the use of reinforcing or bridging material to obtain the surgical outcome. The device is not intended to replace normal body structure or provide the full mechanical strength needed for tendon repair of the Achilles, biceps, patellar, quadriceps, rotator cuff, or other tendons. Sutures, used to tear, and sutures or bone anchors used to attach the tissue to the bone, provide biomechanical strength for the ten repair. Based on the thickness of the matrix, this product is available as Conexa 100 and Conexa 200.

Conexa Reconstructive Tissue Matrix is an implantable orthopedic tissue graft used to reinforce orthopedic soft tissue repairs. It is made from porcine dermis processed to remove porcine cells and other cross-species contaminants, sterilized. The Conexa Reconstructive Tissue Matrix is intended for the reinforcement of soft tissue repaired by suturing anchors during tendon repair surgery and reinforcement for rotator cuff, patellar, Achilles, biceps, quadriceps, or other tendons. Other indications for use include the repair of body wall defects which require the use of reinforcing bridging material to obtain the desired surgical outcome. The manufacturer claims that Conexa supports a regenerative mechanism of action, instead of a "repair" mechanism of action (i.e. scar tissue formation). With repair mechanism
action, the body will attempt to repair the graft site with scar tissue, resulting in weaker, less functional surgical outcome. By providing an intact, undamaged, sterile extracellular matrix, Conexa acts as a host-friendly biologic scaffold that supports attachment of the body’s natural tissue regeneration mechanism to produce new tendon tissue and rapid population of new capillaries to provide blood flow and needed nutrition. Conexa also provides mechanical load sharing reduces the stress on the repair site thereby reducing the chance of a re-tear or sub-optimal repair outcome. Conexa is supplied in a range of sizes from 2x4 cm to 5x10 cm. The size is selected by the surgeon depending on the repair site to be reinforced and may be cut or shaped as needed. Conexa is supplied in a terminally sterile pouch contained in a box. There is one Conexa unit per box. According to the manufacturer, only GraftJacket and Conexa have been validated in primate animal models in published peer-review tissue engineering literature to support a regenerative mechanism.

However, there is insufficient evidence to support the safety and effectiveness of Conexa as studies have primarily focused on the form of individual case reports (Stover et al, 2009).

C-QUR™ Biosynthetic Mesh

C-QUR™ (Atrium Medical Corporation, Hudson, NH) biosynthetic mesh has been proposed for use in abdominal repair procedures. Currently, there are no peer-review published studies available describing this product or its use in human subjects. Further investigation is needed to ascertain the clinical value of C-QUR™ biosynthetic mesh.

EpiFix Amniotic Membrane Allograft

EpiFix amniotic membrane allograft (MiMedx Group, Inc., Kennesaw, GA) is a biologic human amniotic membrane processed through Surgical Biologic's proprietary Purion® process, which combines cleaning, dehydration and sterilization to produce a safe, technically sterilized tissue allowing for storage at room temperature. It is used for the treatment of dermal wounds.

EpiFix is a multi-layer biologic dehydrated human amniotic membrane allograft comprised of an epithelial layer and fibrous connective tissue layers specifically processed to be used for the repair or replacement of lost or damaged tissue. It is prepared from human placenta. The processed allograft contains collagen types IV, V, and VII that promote cellular differentiation and adhesion. Usage includes onlay applications for, but not limited to, neuropathic ulcers, venous stasis ulcers, post-traumatic wounds and post-surgical wounds and pressure ulcers. According to the manufacturer, EpiFix provides a matrix for cellular migration/proliferation, provides a natural biological barrier, and is non-immunogenic. The manufacturer states that it also delivers well-known essential wound healing growth factors; delivers minimally manipulated extracellular matrix (ECM) proteins; provides unique anti-inflammatory cytokines, and contains tissue inhibitors of metalloproteinases. Each allograft is packed in a hermetically sealed double peel pouch packaging in an outer box carton. According to the manufacturer, EpiFix differs from other products produced from human tissue based upon the dermal source of the tissue allograft and allograft contents. Only EpiFix is composed of normal dehydrated human amniotic membrane (dHAM) and has no synthetic components.

There is limited evidence from well-controlled studies of the use of EpiFix amniotic membrane allograft in the treatment of wounds, from a single investigator group, raising questions about the generalizability of findings. Although several studies have examined natural human amniotic membrane in wound healing, these studies would not be applicable to EpiFix because the processing of the human amniotic membrane in preparation of the product may affect its performance. Clinical outcome studies of EpiFix are needed to determine its performance in wound care.

EpiFix Injectable is a minimally manipulated, dehydrated, non-viable cellular amniotic membrane allograft that preserves and delivers multiple extracellular matrix proteins, growth factors, cytokines and other specialty proteins present in tissue to help regenerate soft tissue (CMS, 2013). EpiFix Injectable is used in the treatment and management of chronic wounds. Usage includes injectable applications for neuropathic ulcers, venous stasis ulcers, post-traumatic ulcers, surgical ulcers and pressure ulcers. It is particularly suited to deeply creviced, irregularly shaped or tunneling wounds.

EpiFix Injectable is used for wound treatment, when it is necessary to replace or repair lost or damaged human collagen.
tissue. EpiFix Injectable can be injected in the wound site and hydrated as needed, or mixed with a fixed amount of saline solution to prepare a suspension for injection into the wound or areas of chronic inflammation. The size of the used is determined based upon the size of the wound defect. EpiFix Injectable vials contain processed, dehydrate sterilized amniotic membrane tissue grafts to be reconstituted to 0.5cc, 1.25cc and 2.0cc amounts.

MatriStem Wound Care Matrix

MatriStem Wound Care Matrix is an extracellular matrix product derived from porcine urinary bladder tissue and designed to be replaced by native tissue in the wound (Snyder, et al., 2012). MatriStem Wound Sheet (ACell, Inc., Columbia, Maryland) was cleared for marketing under the 510(k) process in October 2009 and “is intended for the management of wounds including: partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds (donor sites/grafats, post-Mohs surgery, post-laser surgery, podiatric dehiscence), trauma wounds (abrasions, lacerations, second-degree burns, skin tears) and draining wounds. The intended use is not for one-time use.”. MatriStem Wound Care Matrix was cleared for marketing under the 510(k) process in April 2010 (K112409) with MatriStem Wound Sheet as the predicate device and with the same indications.

MatriStem wound micromatrix powder (Medline Industries, Inc., Mundelein, IL) is made from the extracellular matrix material that naturally occurs in porcine bladders (pigs tissue has a collagen structure that is nearly identical to the human tissue); that is why MatriStem wound powder is sometimes known as pig powder. The powder keeps the wound from healing and as a result the body focuses on creating new cells. Its main mechanism has to do with the fact that the body doesn’t have to regenerate so much extracellular matrix on its own. Because the wound is covered in extracellular matrix there’s an increase of regenerative cells that are able to re-grow the tissue. MatriStem MicroMatrix is a porcine-derived, naturally occurring non cross-linked, completely resorbable, acellular extracellular matrix derived from single layers of porcine urinary bladder. MatriStem MicroMatrix is made from the same material as the MatriStem Wound (see 10.062), but in a micronized particle (powder) form. In this form, it is easier to apply when the wound has an irregular shape, under-mining edges or tunneling, or when shifting may cause the wound to lose contact with the dressing. Lyophilized micronized particles are applied topically to the surface of the wound to maintain and support a healing environment for wound management. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated for the management of wounds including: partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds, trauma wounds, and draining wounds. MatriStem wound micromatrix powder is supplied as 20 mg (5 ea) per box; 30 mg (5 ea.) per box; 60 mg (5 ea.) per box; 100 mg (1 ea.) per box; and 200 mg per box. According to the manufacturer, existing codes do not adequately describe this product because of its unique combination of bioactive properties, especially its bimodal characteristic: one surface consists of an intact basement membrane which is especially conducive to epithelial and endothelial cell attachment, proliferation, and differentiation, and the other surface is ideal for epithelial cell growth in many applications, which results in a more natural regeneration with little, if any, tissue formation. However, there is a lack of evidence regarding the effectiveness of the MatriStem wound powder.

MatriStem is a porcine-derived, naturally occurring lyophilized extracellular matrix that maintains and supports a healing environment for wound management. MatriStem Wound Sheets are manufactured in multiple sizes of single layer lyophilized sheet configurations that are applied topically to the surface of the wound. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated for the management of wounds including: partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds, trauma wounds, and draining wounds. MatriStem wound sheets are supplied as: 3 cm x 3.5 cm (box of 5); 3 cm x 7
Wound Care

MatriStem Surgical Matrix is a porcine-derived, naturally occurring dehydrated extracellular matrix that maintains a healing environment for wound management. MatriStem surgical devices are manufactured in various multi-layer dehydrated dry sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated in a complete range of wounds.

MatriStem PSMX is a porcine-derived, lyophilized acellular extracellular matrix that maintains and supports a healing environment for wound management. MatriStem PSMX is manufactured in multi-layer lyophilized (fr dried) sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated for the management of partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds, trauma wounds, and draining wounds. MatriStem® Burn Matrix is manufactured in multi-layer lyophilized (dried) sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated in a complete range of wounds.

MatriStem Burn Matrix is a porcine-derived, naturally occurring dehydrated extracellular matrix that maintains and supports a healing environment for wound management. MatriStem Burn Matrix is manufactured in multi-layer lyophilized (dried) sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated for the management of partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds, trauma wounds, and draining wounds. MatriStem® Burn Matrix is manufactured in multi-layer lyophilized (dried) sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated in a complete range of wounds.

MatriStem PSMX is a porcine-derived, lyophilized acellular extracellular matrix that maintains and supports a healing environment for wound management. It is indicated for the management of partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds, trauma wounds, and draining wounds. When applied to a wound, MatriStem PSMX changes the healing response, resulting in remodeled, functional, site specific tissue. MatriStem PSMX contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem PSMX triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. MatriStem PSMX is supplied as follows: 5cm x 5cm, 4cm x 12 cm, 7cm x 10 cm, 6cm x 15 cm, 8cm x 16 cm, and 10cm x 15 cm (box of 5); 7 cm x 10 cm (1 ea); 10 cm x 15 cm (box of 5); 10 cm x 15 cm (1 ea). According to the manufacturer, existing codes do not adequately describe this product because of its unique combination of bioactive properties, especially its bimodal characteristic: one surface consists of an intact basement membrane which is especially conducive to epithelial and endothelial cell attachment, proliferation, and differentiation and is ideal for epithelial cell growth in many applications, which results in a more natural regeneration with little, if any, scar tissue formation.

MatriStem Burn Matrix is a porcine-derived, naturally occurring dehydrated extracellular matrix that maintains and supports a healing environment for wound management. MatriStem Burn Matrix is manufactured in multi-layer lyophilized (dried) sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated in a complete range of wounds.

MatriStem PSMX is a porcine-derived, lyophilized acellular extracellular matrix that maintains and supports a healing environment for wound management. MatriStem PSMX is manufactured in multi-layer lyophilized (dried) sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem PSMX triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated in a complete range of wounds.

MatriStem PSMX is a porcine-derived, lyophilized acellular extracellular matrix that maintains and supports a healing environment for wound management. MatriStem PSMX is manufactured in multi-layer lyophilized (dried) sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem PSMX triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated in a complete range of wounds.

MatriStem PSMX is a porcine-derived, lyophilized acellular extracellular matrix that maintains and supports a healing environment for wound management. MatriStem PSMX is manufactured in multi-layer lyophilized (dried) sheet configurations. When applied to a wound, these devices change the healing response, resulting in remodeled, functional, site specific tissue. MatriStem contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem PSMX triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue would normally be expected. It is indicated in a complete range of wounds.
15cm. According to the manufacturer, MatriStem PSMX is distinct from the other similar skin substitute products because it is naturally occurring, non-crosslinked, completely resorbable, acellular, and has bimodal surface characteristics and antibacterial properties.

MatriStem Wound Matrix RS is a porcine-derived, lyophilized acellular extracellular matrix that maintains and supports the healing environment for wound management. It is indicated for the management of partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds, trauma wounds, and draining wounds. When applied to a wound, MatriStem Wound Matrix RS changes the healing response, resulting in remodeled, functional, site specific tissue. MatriStem Wound Matrix RS contains a unique epidermal basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all act synergistically in supporting natural tissue healing. MatriStem Wound Matrix RS triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue normally be expected. MatriStem Wound Matrix RS is supplied as follows: 1.5 cm disc (box of 5 each), 2 cm x 4 cm, 5 cm, 7 cm x 10 cm, 6 cm x 15 cm, 8 cm x 16 cm, and 10 cm x 15 cm. According to the manufacturer, MatriStem Wound Matrix RS is distinct from the other similar skin substitute products because it is naturally occurring, non-crosslinked, com resorbable, acellular, and has bimodal surface characteristics and antibacterial properties.

MatriStem PSM is a porcine-derived, extracellular matrix that maintains and supports a healing environment for wound management. It is indicated for the management of partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wounds, trauma wounds, and draining wounds. When applied to a wound, MatriStem PSM changes the healing response, resulting in remodeled, function specific tissue. MatriStem PSM contains a unique epithelial basement membrane which is known to be composed of several types of collagen, adhesion proteins, glycoproteins, and other elements of an extracellular matrix which all synergistically in supporting natural tissue healing. MatriStem PSM triggers abundant new blood vessel formation and recruits numerous cell types to the site of the injury or wound. During the healing process, the device is degraded and completely resorbed, leaving new tissue where scar tissue wound normally be expected. MatriStem PSM is supplied follows: 1.5 cm disc (box of 5 each), 5 cm x 5 cm, 4 cm x 12 cm, 7 cm x 10 cm, 6 cm x 15 cm, 7 cm x 15 cm, and 10 cm x 15 cm. According to the manufacturer, MatriStem PSM is distinct from the other similar skin substitute products because it is naturally occurring, non-crosslinked, completely resorbable, acellular, and has bimodal surface characteristics and antibacterial properties.

NuCel Liquid Wound Covering

NuCel liquid wound covering (Nutech Medical, Birmingham, AL) is derived from healthy living donors. It is an unique in vivo liquid wound covering, providing a defensive barrier at the surgical site in situations where a patch covering is inadequate or inconvenient. Mixed with patients' own blood, NuCel is applied directly to the surgical site, offering the ability to spread the amniotic membrane over an irregular or larger area, including over large bone void fill cons spine fusion or large trauma repair. However, there is a lack of evidence regarding the effectiveness of the NuCel wound covering.

FlexHD

FlexHD is a human allograft skin minimally processed to remove epidermal and dermal cells while providing the acellular matrix of the dermis (Snyder, et al., 2012). It is processed using proprietary procedures developed by Musculoskeletal Transplant Foundation (MTF, Edison, NJ) to preserve and maintain the natural biomechanical, biochemical and mechanical properties of the dermal graft. FlexHD is used to support cellular repopulation and vascularization in applications at surgical site. It is indicated for use to replace damaged or inadequate integumental tissue. Ethicon promotes Flex HD hernia repair and breast reconstruction. There is limited available published evidence on FlexHD prehydrated acellular dermal matrix. Primary studies include a retrospective medical record review of the use of FlexHD in tissue expand breast reconstruction (Rawlani, et al., 2011) and an uncontrolled case series of the use of FlexHD in single-stage breast reconstruction (Rosenberg, et al., 2011). Other studies reported on the use of both FlexHD and AlloDerm human a
dermal tissue matrix in breast reconstruction, but do not report detailed analysis of the comparative efficacy of these products (Topol, et al., 2008; Cahan, et al., 2011).

Oasis Tri-Layer Matrix

Oasis tri-layer matrix (Healthpoint Biotherapeutics, Fort Worth, TX) is an extra-cellular matrix derived from porcine intestinal submucosa (SIS). It is indicated for the management of wounds, including partial and full-thickness wounds, venous ulcers, chronic vascular ulcers, diabetic ulcers, trauma wounds (abrasions, lacerations, burns, and skin tears), drainage wounds, and surgical wounds. After the wound bed is free of exudate and devitalized tissue, the wound matrix is applied over the wound. Once applied, tissues adjacent to the SIS matrix deliver cells nutrients to the wounded tissues using the SIS material as a conduit. The cells rapidly invade the SIS material and capillary growth follows, allowing nutrients to enter the matrix. SIS is strong at the time of placement, and is gradually modeled while the host system reinforces and rebuilds the damaged site with host tissue. As healing occurs, secti

Oasis Ultra Tri-Layer Wound Matrix may gradually peel. All dressings should be changed every 7 days, or as needed. Oasis Ultra Tri-Layer Wound Matrix is supplied in sterile peel-open packages intended for one-time use. It is supplied in sizes: 7 x 10 cm and 7 x 20 cm. However, there is a lack of evidence regarding the effectiveness of the Oasis tri-layer matrix.

Miscellaneous

Isaacs et al (2008) compared a variety of potentially useful artificial and biological sealants applied to sutured nerve to decrease gapping at the repaired site. A total of 57 fresh-frozen cadaveric nerve specimens were transected and repaired with two 8-0 nylon epineural sutures placed 180 degrees apart. The specimens were divided into 5 groups. Each group received augmentation of the repair with application of either autologous fibrin glue, Tisseel fibrin glue, Evicel glue, or DuraSeal polyethylene glycol-based hydrogel sealant, and the 5th group had no glue. Each nerve construct was mounted in a servohydraulic materials testing machine and stretched at a constant 5 mm/min displacement rate until failure. A non-contact video analysis permitted normalization of stretch with in the repair region. Statistical analysis performed via analysis of variance followed by Tukey-Kramer post hoc pair-wise comparison when indicated. Response to gapping as measured through normalized stiffness (N/mm/mm) was greater for the Tisseel group, Evicel group, DuraSeal group versus the no-glue group only. The stiffness of the autologous group approached significance versus the no-glue group. There were no significant differences in stiffness between any of the nerve glue groups. There was no statistical difference for the peak load at failure between any of the groups. The authors concluded that avoidance of gapping at the nerve repair site is crucial in achieving successful nerve regeneration. Commercially available tissue sealants (Tisseel, Evicel, and DuraSeal), when used to augment 2-suture nerve repairs, as in the authors' protocol, prevent this initial gapping. None of the tissue sealants tested, however, increased the ultimate load to complete the repair.

Ferguson et al (2009) assessed scar improvement with avotermin (recombinant, active, human TGFbeta3). In 3 double-blind, placebo-controlled studies, intra-dermal avotermin (concentrations ranging from 0.25 to 500 ng/100 microL per cm wound margin) was administered to both margins of 1 cm, full-thickness skin incisions, before wounding and 24 hours later, in healthy men and women. Treatments (avotermin and placebo or standard wound care) were randomly assigned to wound sites by a computer generated randomization scheme, and within-participant controls compared avotermin placebo or standard wound care alone. Primary endpoints were visual assessment of scar formation at 6 months and 12 months after wounding in 2 studies, and from week 6 to month 7 after wounding in the 3rd. Investigators, participating scar assessors were blinded to treatment. Efficacy analyses were intention-to-treat. In 2 studies, avotermin 50 ng/ microL per linear cm significantly improved median score on a 100 mm visual analog scale (VAS) by 5 mm (range 14; p = 0.001) at month 6 and 8 mm (95% CI: 5.5 to 24.2) at month 12. In the 3rd study, avotermin significantly improved total scar scores at all concentrations versus placebo (mean improvement: from 14.84 mm [95 % CI: 5.5 to 24.2] at ng/100 microL per linear cm to 64.25 mm [49.4 to 79.1] at 500 ng/100 microL per linear cm). Nine (60 %) scars treated with avotermin 50 ng/100 microL per linear cm showed 25 % or less abnormal orientation of collagen fibres in the reticular dermis versus 5 (33 %) placebo scars. After only 6 weeks from wounding, avotermin 500 ng/100 microL per linear cm improved VAS score by 16.12 mm (95 % CI: 10.61 to 21.63). Adverse events at wound sites were similar for avot
and controls. Erythema and edema were more frequent with avoterm than with placebo, but were transient and did to be consistent with normal wound healing. The authors concluded that avoterm has potential to provide an acc and permanent improvement in scarring.

Amniotic Fluid Injection (e.g., Amniofix)

Amniofix (MiMedx Group, Inc.) is a solubilized amniotic membrane for the purpose of growth factors. Amniotic fluid fibrinolytic agents, and there is evidence from animal models of the potential for amniotic fluid injection for corneal healing and for prevention of adhesion formation following orthopedic surgery. However, there is insufficient evidence (from human studies) to support the use of amniotic fluid injection for these indications. A controlled study is current ongoing to evaluate the clinical effectiveness of AmnioFix in the reduction of the tenacity and frequency of soft tissue adhesions during the removal of segmental posterior lumbar instrumentation. In addition, a randomized controlled study Amniofix in the treatment of recalcitrant plantar fasciitis is currently ongoing.

BioDfactor Human Amnion Allograft

BioDfactor human amnion allograft was developed as a liquid wound-covering product for use in-vivo to fill soft tissues defects or bone voids. It can be applied directly to the surgical site or mixed with patients' own blood to provide an use wound-covering.

Koike et al (2011) stated that human amniotic cells are a valuable source of functional cells that can be used in various fields, including regenerative medicine and tissue engineering. These researchers investigated the utility of human amniotic epithelial (hAE) cells as a new cell source for culturing stratified epithelium sheets for intra-oral grafting. Enzymatically isolated hAE cells were submerged in a serum-free, low-calcium-supplemented MCDB 153 medium a feeder layer. The hAE cells were seeded onto a Millicell cell culture plate insert and cultured while submerged in calcium medium for 4 days. Then, they were cultured at an air-liquid interface for 3 weeks. Cultures of hAE cells proliferated at the air-liquid interface. After 3 weeks, the hAE cells cultivated using the air-liquid interface method I almost 10 continuous layers of stratified epithelium without para-keratinization or keratinization. It confirmed immunohistochemically that the presence of CK10/13 and Ki-67 positive cells were spread throughout almost all the epithelial layer, and that CK19 positive cells were expressed throughout the entire epithelial layer in the cultured sheets. Cultured hAE cells sheets showed a staining pattern similar to that of uncultured oral mucosa: ZO-1 and oc were located in the intercellular junctions throughout all the epithelial layers. It was suggested that the hAE sheets consisted of highly-active proliferating cells and undifferentiated cells, and had a barrier function. The authors concluded that these findings suggested that hAE cells may be a promising cell source for the development of stratified epithelial allograft sheets using a human cell strain.

Gutierrez-Moreno et al (2011) analyzed the literature on the safety and effectiveness of amniotic membrane grafting compared the cost of currently available grafts (autografts, amniotic membrane grafts, and biocompatible skin substitutes) to promote tissue repair in venous ulcers. A systematic review of the literature on the use of amniotic membrane graft the treatment of venous ulcers was performed up to 2010. A cost-minimization analysis of direct healthcare costs performed (at 3 and 6 months). A sensitivity analysis was performed to confirm the stability of the results. Only 1 study addressing safety and effectiveness was identified. The cost-minimization analysis showed that autografts are always least-expensive option (€ 1,053 compared with € 1,825 for amniotic membrane grafts and € 5,767 for biocompatible grafts). At 6 months, however, amniotic membrane grafts would have cost € 6,765 less than the use of biocompatible substitutes. The authors concluded that despite having excellent therapeutic potential for the re-epithelialization of ulcers that do not respond to conventional treatment, amniotic membrane transplant remains an experimental therapy. Autograft is the most efficient treatment but amniotic membrane graft is less expensive than the use of biocompatible substitutes.

Fibrin Sealant for Breast Reconstruction
The use of fibrin sealant has been proposed as a means of preventing seroma formation following breast cancer surgery. Carless and Henry (2006) performed a systematic review of RCTs to examine the effectiveness of fibrin sealants in reducing post-operative drainage and seroma formation after breast cancer surgery. Studies were identified by computer searches of Medline, Embase, the Cochrane Central Register of Controlled Trials and manufacturer websites (to 2005), and bibliographic searches of published articles. Trials were eligible for inclusion if they reported data on post-operative drainage and the number of patients who developed a seroma. A total of 11 trials met the criteria for inclusion. In general, the trials were small and of poor methodological quality. Fibrin sealant did not reduce the rate of post-operative seroma (relative risk 1.14, 95% CI: 0.88 to 1.46), the volume of drainage (weighted mean difference - 117.7, 95% CI: 259.2 to 23.8 ml), or the length of hospital stay (weighted mean difference - 0.38, 95% CI: - 1.58 to 0.83 days). The authors concluded that the current evidence does not support the use of fibrin sealant in breast cancer surgery to reduce post-operative drainage or seroma formation.

Cipolla et al (2010) evaluated the effectiveness of fibrin glue in the prevention of seroma formation after axillary lymphadenectomy. A total of 159 breast cancer patients about to undergo quadrantectomy or mastectomy plus axillary lymphadenectomy were enrolled in the study and randomized into 2 groups: (i) fibrin glue spray applied to the axilla plus placement of closed suction drainage were used in 80 patients (group A), and (ii) placement of closed suction was only used in 79 patients (group B). Patients in group A showed a slight advantage with regard to the mean auxiliary drainage placement (4.5 +/- 1.3 days in group A versus 5.1 +/- 1.6 days in group B) and number of seroma aspirations (6.3 +/- 1.1 in group A versus 6.7 +/- 1.2 in group B). No statistically significant differences were observed between the 2 groups of patients regarding the mean volume of total axillary drainage and of total seroma volume. The authors concluded that the use of fibrin glue does not prevent seroma formation and does not reduce seroma magnitude and duration.

Llewellyn-Bennett et al (2012) noted that latissimus dorsi (LD) flap procedures comprise 50% of breast reconstruction procedures in the United Kingdom. They are frequently complicated by seroma formation. In a randomized study, these researchers investigated the effect of fibrin sealant (Tisseel) on total seroma volumes from the breast, axilla and back (donor site) after LD breast reconstruction. Secondary outcomes were specific back seroma volumes together with incidence and recurrence of wound complications. Consecutive women undergoing implant-assisted or extended autologous LD flap reconstruction were randomized to either standard care or application of fibrin sealant to the donor-site chest wall. All participants were blinded for the study duration but assessors were only partially blinded. Non-parametric methods were used for analysis. Overall, back seroma volumes were high, with no significant differences between control and sealant groups over 3 months. Fibrin sealant failed to reduce in-situ back drainage volumes in the 10 days after surgery, and did not affect the rate or volume of seromas following drain removal. The authors concluded that the findings of this randomized study, which was powered for size effect, failed to show benefit from fibrin sealant in minimizing back seromas after LD procedures.

CellerateRx

CellerateRX activated type I collagen powder is composed of collagen fragments approximately 1/100th the size of the native collagen molecule. The product is intended to deliver the benefits of collagen immediately to the wound site and can be used for a variety of wounds. Newman, et al. (2008) reported on their experience with CellerateRx activated type I collagen in the treatment of recalcitrant wounds in the diabetic population resulting from minor trauma and/or venous stasis disease. The authors reported on two middle-aged diabetic male patients with lower extremity wounds refractory to conservative wound care who were treated with CellerateRx (activated, fragmented, and nonintact type I collagen) powder form. The authors stated that both patients had complete resolution of recalcitrant wounds in 6 to 7 weeks. The authors concluded that wound resolution was evident when using the authors' practice protocol, which includes the application of activated collagen. The authors stated that the inherent properties of type I collagen may contribute to a rapid healing process.

Grafix Core and Grafix Prime
Grafix Core is an allograft containing endogenous mesenchymal stem cells indicated for the treatment of deep chronic wounds, limb salvage procedures, tendon repair and burns. Grafix Prime is an allograft containing endogenous mesenchymal stem cells indicated for upper epithelial layer chronic wounds and burns.

hMatrix

hMatrix acellular dermis is a dermal scaffold processed from donated human skin. The skin is processed to remove epidermal layer from the dermis as well as the epidermal and dermal cells from the collagen and elastin that constitute the dermal matrix. The dermal matrix is then packaged and sterilized using low-dose gamma irradiation; the product is supplied frozen. hMatrix is indicated for use to replace damaged or inadequate integumental tissue. It is designed for homologous use only. Specific uses of hMatrix include use as a wound covering, abdominal wall repair, breast reconstruction, and for use in supplemental support, reinforcement, or covering of tendons or periosteum. A published study addressing the use of hMatrix for wound treatment.

In an evidence-based review, Clemens and Kronowitz (2012) evaluated the clinical impact of acellular dermal matrix in breast reconstruction in the setting of radiation therapy. The MEDLINE and EMBASE databases were reviewed for published between January of 2005 and February of 2012. The authors also reviewed their institutional experience with consecutive patients who met these criteria between January of 2008 and October of 2011. A total of 13 articles were identified for review: 3 animal studies on acellular dermal matrix and 10 with level III evidence of its use in humans. Clinical studies included 246 irradiated patients. The M.D. Anderson experience included 30 irradiated acellular dermal matrix patients for a total of 276 irradiated patients evaluated in this review. Use of acellular dermal matrix in implant breast reconstruction in the setting of radiation therapy did not predispose to higher infection or overall complication rates. The authors concluded that use of acellular dermal matrix for implant-based breast reconstruction does not appear to increase or decrease the risk of complications, but it might provide psychological aesthetic benefits. They stated that multi-center or single-center RCTs that provide high-quality, level I evidence are warranted.

Shridharani and Tufaro (2012) conducted a systematic review of acellular dermal matrices in head and neck reconstruction. After searching the PubMed database and following further refinement (based on the authors’ inclusion criteria), the authors identified 30 studies that provided information about patients who had undergone head and neck reconstruction with the use of acellular dermal matrix. Studies had to report quantifiable objective results in patients who were older than 1 year and younger than 90 years. The authors excluded single case reports, studies with fewer than 10 patients, and studies not published in English. The optimal material used as an implant for reconstruction possessed the following properties: facilitation of vascular ingrowth, decreased propensity to incite inflammation, biologic inert resistance to infection, and ease of handling. Acellular dermal matrix possesses many of these properties and is useful in reconstructing nasal soft tissue and skeletal support, tympanic membrane, peri-orbital soft tissue, extra-oral and in
defects, oropharyngeal defects, dura mater, and soft-tissue deficits from parotidectomy. Furthermore, it is used to preventing Frey syndrome following parotidectomy and surgical treatment of facial paralysis. The authors conclude use of acellular dermal matrix for head and neck reconstruction has expanded exponentially and is validated in many studies. Moreover, they noted that further prospective RCTs are needed to further examine the effectiveness of acellular dermal matrix in head and neck reconstruction.

In a systematic review, Janis et al. (2012) examined the benefits of acellular dermal matrices in abdominal wall reconstruction. The MEDLINE database was reviewed, including all publications as of December 31, 2011, using search terms "dermal matrix" or "human dermis" or "porcine dermis" or "bovine dermis," applying the limits "human English language". Prospective and retrospective clinical articles were identified. A total of 40 eligible articles were identified and included in this review; 35 of the studies were level IV; the remaining studies were level III. Acellular matrix was used to reconstruct the abdominal wall in a wide range of clinical settings, including trauma, tumor resepsis, and hernia repairs. The operative methods varied widely among clinical studies. While the heterogeneity of patient populations and techniques limited interpretation of the data, concerns were identified regarding high rates recurrence with acellular dermal matrix use. The authors concluded that high-quality data derived from level I, II, a studies are needed to determine the indications for acellular dermal matrix use and the optimal surgical techniques maximize outcomes in abdominal wall reconstruction.

Ellis and Kulber (2012) reviewed the current literature on the use of acellular dermal matrix in forearm, wrist, and hand reconstruction. A comprehensive literature search was performed using the Cochrane Database of Systematic Reviews, MEDLINE, PubMed, and Web of Knowledge. Articles were categorized as acellular dermal matrix used in soft-tissue and ligament reconstruction. Search terms included "acellular dermal matrix," "biologic dressing," "skin replacement" "dermal allograft," "AlloDerm," "FlexHD," "Permacol," and "Strattice". These were all cross-referenced with "forearm," "wrist," and "hand". Data extraction focused on indications, surgical techniques, clinical outcomes, and complications. Exclusion criteria included regeneration templates, neonatal foreskin, and review articles. More than 100 articles published between 1994 and 2011 were identified. Upon final review, 5 prospective case-control studies, 3 retrospective case studies, 4 case reports, 1 cross-sectional cohort, 1 prospective consecutive series, and 1 study type unknown were evaluated. Matrix was most commonly used in burn reconstruction. It has also been used in ligament and joint reconstruction for first carpometacarpal arthritis. One article illustrated the use of porcine matrix in basal joint arthroplasty that was abruptly terminated because of a concern over increased infections. The authors concluded that clinical indications for acellular dermal matrix have increased throughout the last 15 years. Hand surgeons have been cautious but diligent in developing alternative treatment options in hand reconstruction, with a focused effort to reduce donor-site morbidity. They stated that although acellular dermal matrices continue to find innovative uses to solve extremity surgical problems, more comparative prospective trials are needed.

Mediskin

Mediskin is a frozen irradiated porcine-derived de-cellularized fetal skin product with a dermal and epidermal layer. Mediskin is a frozen irradiated porcine xenograft that has a shelf life of 24 months. It may reduce pain, protein, and fluid provide a barrier to external contamination and a moist wound healing site, and protect underlying tissue in the tre burns, abrasions, donor sites, decubitus and chronic vascular ulcers. It also provides an optimal environment for wound healing. Mediskin may also be used as temporary wound cover. It can be used on any person except those who have known sensitivity to porcine products, on patients with histories of multiple serum allergies, or on wounds with large amounts of eschar. As the wound heals, Mediskin will naturally slough off. It is supplied in rolls (3" wide by 12, 24 or long) and is also supplied in 7" x 18" sheets and patches of 3"x4" and 2"x2". According to the manufacturer, the product differs from others as it is a porcine xenograft, temporary skin substitute. There are few published studies addressing the use of Mediskin® for wound treatment. The use of porcine-derived de-cellularized fetal skin products (e.g., Mediskin®) has not been established since there are currently no published studies addressing the use of Mediskin®.

Parietex Composite (PCO) Mesh
Parietex™ Composite (PCO) mesh has a resorbable collagen barrier on one side to limit visceral attachments and polyester knit structure on the other to promote tissue ingrowth and ease of use. There is a lack of evidence regard clinical value of the Parietex Composite Mesh in the treatment of genito-urinary (e.g., uterine or vaginal vault) prolapse.

On July 13, 2011, the FDA issued a statement that serious complications are not rare with the use of surgical mesh -vaginal repair of pelvic organ prolapse. The FDA reviewed the literature from 1996 to 2011 to evaluate safety and effectiveness and found surgical mesh in the trans-vaginal repair of pelvic organ prolapse does not improve sympto quality of life more than non-mesh repair. The review found that the most common complication was erosion of th through the vagina, which can take multiple surgeries to repair and can be debilitating in some women. Mesh cont was also reported, which causes vaginal shortening, tightening, and pain. In addition, the FDA’s update stated th mesh erosion and mesh contraction may lead to severe pelvic pain, painful sexual intercourse or an inability to eng sexual intercourse. Also, men may experience irritation and pain to the penis during sexual intercourse when the exposed in mesh erosion”.

Alloskin

Alloskin (Allosource, Centennial, OH) is a specialty allograft derived from epidermal and dermal cadaveric tissue a designed for wound care (Snyder, et al., 2012). Alloskin is a 1:1 meshed, biological cadaveric dermis, which is decellularized and further processed to provide an acellular tissue allograft (CMS, 2013).

Alloskin AC allograft is a natural skin replacement that can be used as a scaffold for regeneration of tissue through revascularization and remodeling into the host tissue to achieve wound closure of partial or full-thickness wounds d tissue loss from burns, trauma and chronic wounds, such as venous and arterial ulcers, diabetic foot ulcers and pr ulcers (CMS, 2013). Alloskin AC tissue allograft is surgically applied and secured to the skin by the anchoring meth chosen by the surgeon (sutures, staples, adhesive glue, etc.). Alloskin AC is supplied 4cmx4cm/16cm2 and 5cmx5cm/25cm2. There is a similar human cadaver acellular product, Graftjacket. Alloskin AC is processed differ than Graftjacket. After epidermal layer is removed by chemical delamination, the resulting dermal product is low-do beam irradiated to preserve the graft in a shelf-stable format. E-beam sterilization is considered a gentler method o sterilization than gamma irradiation for delicate collagen matrices.

AlloSkin RT human allograft is a meshed, biologic wound covering comprised of human cadaveric dermis. It is low-beam irradiated, allowing its use in clinical settings where there is no access to a cryo-rated freezer. AlloSkin RT is homologous use and is used clinically as a temporary skin replacement for closure of partial or full-thickness woun burns, trauma or chronic wounds, such as venous and arterial ulcers, neuropathic diabetic ulcers and pressure ulcer AlloSkin is surgically applied and secured to the skin by anchoring method chosen by the surgeon (sutures, staple adhesive glue, etc.). The allograft sloughs in 7-14 days as granulation of the wound bed proceeds, and might be re to provide a skin replacement that is intended to help promote wound healing by protection of the injured tissues a supporting final closure of the wound. The manufacturer states that Alloskin is processed differently than similar pr

Moravveg, et al. (2012) reported on 14 patients with severe third-degree burns treated with Alloskin from June 200 December 2010 as the sample for this study. After debridement and wound excision, meshed split thickness skin g used to cover the entire wound. Alloskin (allofibroblasts cultured on a combination of silicone and glycosaminoglyca applied on one side and petroleum jelly-impregnated gauze (Iran Polymer and Petrochemical Institute) was applie other. The healing time, scar formation, and pigmentation score were assessed for the patients. All analyses were undertaken with SPSS 17 software. The authors stated that Alloskin demonstrated good properties compared to pe jelly-impregnated gauze. The average healing time and hypertrophic scar formation were significantly different betw two groups. In addition, the skin pigmentation score in the alloskin group was closer to normal. The authors stated Alloskin grafting may be a useful method to reduce healing time and scar size and may require less autologous sp thickness skin grafts in extensive burns where a high percentage of skin is burned and there is a lack of available d sites.
AlloMax

AlloMax is an allograft made from donated human skin consisting of epidermal and dermal layers. AlloMax is a dry sterile, human dermis for use in repairing abdominal wall wounds, multi-layer surgical wounds/openings and other damaged tissue. According to the manufacturer, when hydrated and placed in contact with healthy well vascularize the graft supports cell in-growth and revascularization, allowing the body to remodel the graft and over time close t wound. In breast reconstruction, it closes the space between the pectoralis muscle and the chest wall. For hernia r AlloMax is used to repair complex abdominal wall wounds. Often multiple pieces of AlloMax are sutured together t an abdominal wall wound or defect. AlloMax is supplied in an individualized sterile pouch in a variety of sizes. Acco the manufacturer, there are significant differences in product attributes even among similar products.

A 2012 review was conducted on the history of use of acellular dermal matrices in breast reconstructive surgery (C St. Cyr, 2012). The authors stated that a paucity of data exists to directly compare AlloDerm®, DermaMatrix®, Str Permacol™, DermACELL, FlexHD®, SurgiMend®, and AlloMax™ for use in breast reconstruction. They found th studies related to hernia repair and concluded that an ideal acellular dermal matrix product is still unavailable.

AlloPatchHD

AlloPatchHD is a human allograft skin minimally processed to remove epidermal and dermal cells. It is processed proprietary procedures developed by Musculoskeletal Transplant Foundation (MTF, Edison, NJ) to preserve and m the natural biomechanical, biochemical and matrix properties of the dermal graft. AlloPatchHD is used to support c repopulation and vascularization in applications at the surgical site. According to the manufacturer, this unique prod indicated for use to replace damaged or inadequate integumental tissue. Allopatch HD is designed to provide an extracellular matrix scaffold for tendon augmentation (Snyder, et al., 2012).

Arthroflex

According to the manufacturer, Arthroflex is a unique decellularized human skin allograft product indicated for the t of chronic wounds, such as diabetic foot ulcers and large surgical wounds. Arthroflex contains both collagen and e which provide structural support for resilience, a compliment of growth factors to assist healing, as well as multiple cytokines that assist in epithelialization and modulate the proliferation and differentiation of epithelium, and finally f developed extracellular matrix which allows for infiltration of recipient cells. The extracellular matrix stimulates epithelialization from the wound periphery and from remnant epidermal appendages when placed in contact with th wound. The manufacturer states that Arthroflex provides a physiological barrier that decreases water loss, electroly proteins and heat from the wound bed and creates a mechanical barrier that reduces environmental microbiologica contamination. Arthroflex is applied directly to the wound or ulcer and secured to the site in one of several ways, in the use of sutures, staples, or skin adhesive strips. It is currently provided with a thickness of 1.26 mm to 1.75 mm scaffold sizes: 35 mm x 35 mm and 40 mm x 70 mm. The manufacturer states that they are likely to provide additio product sizes and thicknesses in the future. Available peer-reviewed published medical literature on Arthroflex has on its biomechanical properties (Ehsan, et al., 2012; Beitzel, et al., 2012).

DermACELL

DermACELL is a regenerative human dermal allograft procured and processed from donated human tissue. Derm used to provide a physiological and mechanical barrier that reduces environmental contamination and assists in pr of granulation tissue and epithelialization for any topical or surgical wound. It is sutured topically to wounds, such a non-healing wounds or partial and full thickness burns, and is sutured surgically to muscle flaps or other connective for indications such as closing of complicated ventral/incisional hernias, breast reconstruction, temporal defects, te and ligament damage, and in guided tissue regeneration in oral applications. As an allograft collagen scaffold, De rmACELL supports a patient’s own cellular in-growth, resulting in tissue regeneration. DermACELL is supplied as one packag allograft in various sizes, from 4 to 96 square centimeters and from 0.2-0.4 mm thick.
DermaCELL is provided by the Skin and Wound Allograft Institute, which is a wholly owned subsidiary of LifeNet H (Virginia Beach, VA) (Snyder, et al., 2012). The company believes that its MatraCell processing technology creates readily available, extracellular matrix that then provides a collagen scaffold to support cell ingrowth.

There is insufficient published evidence in the peer-reviewed medical literature on DermACELL (Chen, et al., 2012 et al., 2012).

Repriza

Repriza is an acellular dermal matrix derived from human allograft tissue. It is intended for implantation during plas reconstructive surgeries where ever an acellular dermal matrix may be used. For example, it may be used to support implants in a defined pocket such as in breast reconstruction, and abdominal wall reconstruction procedures. Repriza also be used in a range of applications to augment soft tissue irregularities and for implantation in irregularities such as depression over the nasal bridge. Repriza is a "surgical implant" and "would have no other use outside the surgica l". The scaffold is gradually integrated with, and ultimately replaced by the body's own tissue. The quantity of product varies based upon surgical application, individual patient circumstances, and the dimensions of the surgical site. Repriza is supplied sterile and ready to use in two sizes: 4 x 12 cm and 6 x 16 cm. Custom sizes and thicknesses are available on request. According to the manufacturer, Repriza is used in the same indications and same manner as Alloderm an "Jacket"; however, there is a significant difference in the cost of the materials.

MemoDerm

MemoDerm (Memometal, Inc., Memphis, TN) is a sterile acellular dermal allograft derived from aseptically processed cadaveric human skin tissue that is terminally sterilized (Snyder, et al., 2012). It is intended for the repair or replace damaged or inadequate integumental tissue or for other homologous uses of human integument. The allograft acts as a scaffold of collagen and elastin fibers that are preserved during the process that renders the allograft acellular. During the granulation phase of the wound repair/regeneration cycle, the matrix of intact collagen network and preserved vascular channels in MemoDerm acts as a scaffold to facilitate angiogenesis and migration of growth factors that stimulate cell migration. When applied to wounds, MemoDerm has been shown to become vascularized and incorporated into the bed and provide an effective means for wound closure. MemoDerm is supplied freeze-dried and must be rehydrated before use. Once rehydrated, the allograft can be applied topically to the wound and secured by suturing and stapling to the skin surrounding the wound.

Matrix HD

Matrix HD (RTI Biologics, Alachua, FL) is a human dermal allograft restricted to homologous use for wound care; protection, reinforcement or covering of soft tissue in horizontal and vertical augmentation procedures. Matrix HD is dehydrated acellular dermis from donated human tissue. The allograft provides a natural collagen scaffold skin sub surface for the body's regenerative processes. Matrix HD is typically used in conjunction with a chronic wound care management regime for the treatment of diabetic ulcers, charcot foot ulcers, venous ulcers, trauma wounds, press sure/ulcers, partial and full thickness wounds, and surgical wounds. Once the wound bed is prepared, the graft is placed and secured with sutures. Two allografts may be applied, one on top of the other, for optimal healing results. Matrix HD is supplied in patient specific sizes, ranging from 2 x 3 cm to 10 x 10 cm, so that the surgeon can utilize the amount of graft needed. The size is selected by the surgeon depending on the size of the wound.

BioCleanse

BioCleanse processed human allograft tendons are used in various areas of the body to repair, replace or recon struct native tendon or ligament. The tendon is surgically implanted into the body to recreate the normal anatomy and reestablish normal function. It can be used to repair anterior cruciate ligaments, posterior cruciate ligaments, medial collateral ligament, lateral collateral ligaments, poster ior lateral corner, medial patella femoral ligament, Achilles tendons, biceps, acromioclavicular joints, lateral ankle stabilizations, lunar collateral ligaments and any soft tissue repair augmentati...
using BioCleanse tendons instead of an autograft, the surgeon may minimize operating time and eliminate second-
donor morbidity. BioCleanse tendons are restricted to homologous use for the repair, replacement or reconstructio
musculoskeletal defects by a qualified healthcare professional.

Strattice

Strattice is a reconstructive tissue matrix (surgical mesh) that supports tissue regeneration. It is derived from porc
dermis and undergoes non-damaging proprietary processing that removes cells and significantly reduces the key
component believed to play a major role in the xenogeneic rejection response. Strattice is used by surgeons as a s
implanted soft tissue patch to reinforce a patient's soft tissue where weakness exists, and for the surgical repair of
damaged or ruptured soft tissue, such as in hernia repair, open abdominal repairs and in breast reconstruction, po
mastectomy. Once implanted, Strattice promotes rapid revascularization [cell repopulation and white cell migration
provides for management and strong repair of partial and full thickness wounds; pressure ulcers; venous ulcers; dia
ulcer; chronic vascular ulcers; tunneled/undermined wounds; surgical wounds; trauma wounds; draining wounds; o
bleeding surface wounds. Strattice is available to physicians in 2 versions: pliable and firm, in various sizes: Pliable
16 cm and 8 cm x 16 cm, and Firm: 6 cm x 16 cm, 10 cm x 16 cm, 16 cm x 20 cm, 20 cm x 20 cm, and 20 cm x 25
physician will determine the most appropriate size and version to be used based on each individual patient case.

The use of Strattice porcine-derived decellularized collagen products has been proposed for use in various surgica
procedures and in the treatment of dermal wounds. Currently, there is insufficient evidence to allow for proper eva
regarding the effectiveness of this technology.

Unite Biomatrix

Unite Biomatrix (Synovis Orthopedic and Woundcare, Inc.) is a wound biomodulating decellularized extracellular m
(ECM) that is sourced from equine pericardium (Snyder, et al., 2012). Unite Biomatrix is indicated for local manage
moderately to heavily exudating wounds. Unite Biomatrix was cleared by the FDA in 2011 based upon a 510(k) "F
management of moderately to severely exudating wounds, including: partial and full thickness wounds, draining wo
pressure sores/ulcers, venous ulcers, chronic vascular ulcers, diabetic ulcers, trauma wounds (e.g., abrasions, lac
partial thickness [second-degree] burns, skin tears), surgical wounds (e.g., donor sites/grafts, post-laser surgery, p
Mohs surgery, podiatric wounds, dehisced surgical incisions)."

It is applied to the debrided wound bed without promoting an inflammatory response, while maintaining integrity as
wound heals. To apply, cut the rinsed Unite Biomatrix to a size slightly larger than the outline of the wound area an
in place by sutures or staples. As healing occurs, sections of the matrix may gradually peel and may be removed d
washing changes. Additional Unite Biomatrix may be applied to discrete areas of the wound that have not yet heal
satisfactorily. Unite Biomatrix is packaged in a chemical solution and is available pre-fenestrated or non-fenestrated
Biomatrix differs from other products in that it is composed of decellularized equine pericardial implants. The use o
derived decellularized collagen products (e.g., OrthADAPT™ and Unite™) has not been established as shown by t
of evidence on the subject.

OrthADAPT

OrthADAPT Bioimplant is a highly organized Type 1 collagen scaffold derived from Equine Pericardium used as a
for soft tissue repair and reinforcement. OrthADAPT Bioimplant is intended to be used for implantation to reinforce
repair or reconstruction of soft tissues, including the reinforcement of soft tissues repaired by sutures or suture anc
during surgical repair. The inherent properties of this xenograft provide support to challenging tendon repairs in bo
medicine and lower extremity surgical repairs, such as reinforcement of rotator cuff, patellar, Achilles, biceps, quad
or other tendons. The use of equine-derived decellularized collagen products (e.g., OrthADAPT™ and Unite™) ha
been established as shown by the lack of evidence on the subject.

Talymed
Talymed (Marine Polymer Technologies, Inc., Danvers, MA) is a sterile wound matrix comprised of shortened fibers N-acetylglucosamine, isolated from microalgae (Snyder, et al., 2012). Talymed is indicated for the management of including: diabetic ulcers, venous ulcers, pressure wounds, ulcers caused by mixed vascular etiologies, full thickne partial thickness wounds, second degree burns, surgical wounds, traumatic wounds healing by secondary intentio vascular ulcers and dehisced surgical wounds and bleeding surface wounds, abrasions and lacerations. Talymed i on the open wound and covered with a transparent dressing. New wound matrix can be reapplied as necessary. Ta is provided as a 5 x 5 cm and 10 x 10 cm patch that should be cut to fit wound size. According to the manufacturer Talymed is similar to Oasis Wound Matrix, Integra Flowable Wound Matrix, and PriMatrix Dermal Repair Scaffold, created from a different source and has a different mechanism of action.

Talymed was cleared for marketing under the 510(k) process (K102002) in July 2010 for “the management of woun including: diabetic ulcers; venous ulcers; pressure wounds; ulcers caused by mixed vascular etiologies; full thickne partial thickness wounds; second degree burns; surgical wounds-donor sites/grafts, post-Mohs surgery, post laser and other bleeding surface wounds; abrasions, lacerations; traumatic wounds healing by se condary intention; chro vascular ulcers; dehisc ed surgical wounds.”

Hankins et al (2012) evaluated in terms of number needed to treat (NNT), the comparative clinical and cost efficac targeted advanced wound care matrices (AWCMs) as adjuncts to compression therapy for the treatment of chronic leg ulcers (VLUs) from the U.S. health care system (payer) perspective. A review of published articles (from the e available Medline publication date to June 1, 2011) identified randomized controlled trials (RCTs) evaluating compl wound closure rates for up to 24 weeks in patients with VLUs treated with targeted AWCMs (Apligraf, Oasis, or Tal plus compression therapy compared with compression therapy alone. The most favorable estimates of product eff (i.e., those that were statistically significant compared with compression therapy) were used. These included statis adjusted results for Apligraf as reported in the product insert and the biweekly application for Talymed. Based on t reported efficacy of targeted AWCMs, these researchers calculated the NNT to achieve 1 additional treatment succ complete wound closure) over that which was achieved with standard therapy alone; 95 % CIs were estimated usi Wilson score method proposed by Newcombe. Cost efficacy, defined as the incremental cost per additional succe treated patient, was then calculated by multiplying the NNT associated with each treatment by the product acquisit per treated VLU episode. One study for each of 3 targeted AWCMs (Apligraf [n = 130 treatment, n = 110 control]; Wound Matrix [n = 62 treatment, n = 58 control]; and Talymed [n = 22 treatment, n = 20 control]) met inclusion crite Study designs and wound characteristics varied. Average VLU sizes were 1 cm2, 10 to 12 cm2, and 10 to 13 cm2 studies of Apligraf, Oasis, and Talymed, respectively. Ulcer duration exceeded 12 months for 50 % of patients in t Apligraf study and was at least 7 months for 47 % of patients in the Oasis study; patients with ulcers exceeding 6 m were excluded from the study of Talymed. Length of follow-up was 24 weeks for Apligraf, 12 weeks for Oasis, and weeks for Talymed. NNT point estimates of clinical efficacy were 2 for Talymed, 5 for Oasis, and 6 for Apligraf; 95 ranged from 2 to 8 for Talymed, 3 to 24 for Apligraf, and 3 to 39 for Oasis. Incremental costs (95 % CIs) per additio successfully treated patient were $1,600 ($1,600 to $6,400) for Talymed, $3,150 ($1,890 to $24,570) for Oasis, an $29,952 ($14,976 to $119,808) for Apligraf. The authors concluded that the most expensive AWCM for the treatme VLUs did not appear to provide the greatest comparative clinical or cost efficacy. Conclusions must be tempered small number of available studies (n = 3), variability in trial duration (from 12 to 24 weeks) and baseline wound characterist, and limitations in study quality. Given the high prevalence, economic burden, and substantial disab VLUs, and the wide variation in costs for AWCMs, payers need more high-quality head-to-head comparisons to gu coverage and reimbursement determinations for these products.

Endoform

Endoform Dermal Template (Mesynthes, Ltd., North Attleboro, MA, and Wellington, New Zealand) is a non-recons ovine acellular, collagen, single-use wound dressing indicated for in the treatment of partial and full-thickness woun pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled/undermined wounds, surgical wo trauma wounds, and draining wounds (Snyder, et al., 2012).
EndoForm Dermal Template is an extracellular matrix derived from ovine forestomach. According to the company W “Endoform is a proprietary biomaterial containing a rich and complex mix of important biological extracellular matrix molecules, including structural (collagens I, III, IV & elastin) and adhesive proteins (fibronectin and laminin), glycosaminoglycans (heparin sulfate and hyaluronic acid) and growth factors (FGF2 & TGFβ).”

EndoForm Dermal Template was cleared for marketing under the 510(k) process in January 2010 for “single use in treatment of the following wounds: partial and full-thickness wounds; pressure ulcers; venous ulcers; diabetic ulcer chronic vascular ulcers; tunnelled/undermined wounds; surgical wounds (donor sites/grafts, post-Mohs surgery, post surgery, podiatric, wound dehiscence); trauma wounds (abrasions, lacerations, second-degree burns, and skin tea draining wounds.”

EndoForm Dermal Template is a wound dressing primarily composed of ovine collagen and is supplied as a sterile perforated or meshed sheet ranging in size from 9 cm2 to 400 cm2. Endoform is supplied sterile and is intended for use in the treatment of wounds. Endoform is cut to fit the shape of the wound, placed on the wound bed, rehydrate sterile saline and covered. When rehydrated, Endoform transforms into a soft conforming sheet which is naturally incorporates into the wound over time. The dressing can be left in place for 5 - 7 days. Endoform is sold in boxes of dressings each and has a 2 year shelf-life. Endoform does not require physician fixation. Because of its simplicity, at home can perform a dressing change once a treatment plan has been established.

There is a lack of peer-reviewed published evidence on Endoform collagen wound dressing.

DuraSeal

DuraSeal Xact is a synthetic, absorbable hydrogel used for dural sealing to prevent cerebral spinal fluid (CSF) leak dura mater. It is indicated as an adjunct to sutures for repair in spine surgery. DuraSeal Xact is sprayed onto a target site as a two-component liquid system through an applicator attached to two syringes. During application, the two liquid mix and react to form a flexible, absorbable hydrogel suitable for sealing the dura mater. DuraSeal Xact is supplied containing two pre-filled syringes, a powder vial, and an applicator. The powder vial contains PEG, which is reconstituted by the first syringe to create a PEG ester solution. The second syringe contains a trilysine amine solution polymerize to form a biocompatible absorbable hydrogel.

Dermaspan

DermaSpan is an acellular dermal matrix derived from aseptically processed cadaveric human allograft skin tissue used for the repair or replacement of damaged or inadequate integumental tissue or for other homologous uses of integument. The allograft acts as a scaffold to facilitate angiogenesis and migration of growth factors that stimulate migration. The collagen scaffold of DermaSpan facilitates the recellularization and revascularization of the host tissue. DermaSpan is applied to the patient's surgical site and secured by suturing. It may be applied for up to two applications. According to the applicant, when applied to the wound, DermaSpan has been shown to become vascularized and incorporated into the wound bed and to provide an effective means for wound closure. DermaSpan is supplied free with one side covered by a layer of N-Terface membrane backing enclosed inside a Tyvek inner pouch. The allograft inner pouch are then enclosed in a secondary outer Poly-foil pouch and sterilized. Approximate allograft dimension thicknesses and expiration date are indicated on the labeling. There is a lack of peer-reviewed published clinical evidence supporting the use of DermaSpan.

Integuply

Integuply is an acellular human dermis derived from aseptically processed human allograft skin tissue. It is indicated for repair or replacement of damaged or inadequate integumental tissue or for other homologous uses of human integument. Integuply is typically used in conjunction with a chronic wound care management regimen for the treatment of diabetic ulcers, charcot foot ulcers, venous ulcers, trauma wounds, pressure ulcers, pressure ulcers, partial and full thickness wounds, and surgical wounds. When applied to wounds, Integuply becomes vascularized and incorporated into the
bed to provide an effective means of wound closure. The matrix and preserved vascular channels in Integuply acts scaffold to facilitate angiogenesis and migration of growth factors that stimulate cell migration. Integuply is applied to the wound site and secured by suturing or stapling to the skin surrounding the wound. Typically only one applica
needed. It can be meshed or non-meshed. Integuply is supplied in 38 different sizing and thickness configurations packaged freeze dried.

Promogran

Promogran Matrix Wound Dressing (Ethicon) is a sterile primary dressing comprised of freeze-dried composite ov perccent collagen and 45 percent oxidized regenerated cellulose. Promogran Matrix wound ressing is indicated for management of exuding wounds including: diabetic ulcers, venous ulcers, ulcers caused by mixed vascular etiolog thickness and partial thickness wounds, donor sites and other bleeding surface wounds, abrasions, traumatic woun healing by secondary intention, and dehisced surgical wounds.

Duragen Plus

DuraGen Plus Dural Regeneration Matrix is an absorbable implant for repair of dural defects. It is a soft, white, plia nonfriable porous collagen matrix. DuraGen Plus is supplied as sterile, non-pyrogenic, for single use.

DermaMatrix

DermaMatrix tissue is an allograft derived from donated human skin. To minimize inflammation or rejection at the s site, the epidermis and all viable dermal cells are removed while the original dermal collagen matrix is maintained. DermaMatrix Acellular Dermis is processed by the Musculoskeletal Transplant Foundation (MTF) and is available t Synthes CMF. Published peer-reviewed evidence for DermaMatrix has focused on its use in breast reconstruction, used for the replacement of damaged or inadequate integumental tissue or for the repair, reinforcement or supple support of soft tissue defects. According to the manufacturer, clinical applications include, but are not limited to the following: facial applications, including soft tissue defects, nasal reconstruction and septal perforation, parotidocte intraoral applications, including cleft palate repair, oral resurfacing, vestibuloplasty; radial forearm free flap repair; b reconstruction postmastectomy; and abdominal wall repair. Peer-reviewed published evidence for DermaMatrix ha focused primarily on its use in breast reconstruction. There is limited peer-reviewed published evidence supporting for other applications (Capito, et al., 2012; Athavale, et al., 2012; Kathju, et al., 2011; Lee, et al., 2010).

Grafix

Grafix CORE is an allograft derived from human chorionic placental tissue “intended” for patients with acute and c wounds including, but not limited to, diabetic foot ulcers, venous stasis ulcers and pressure ulcers that have not res to standard of care therapy. Grafix CORE has one layer (a thick stromal layer), a collagen rich membrane, mesenc stem cells (MSCs), and anti-inflammatory cytokines and regenerative growth factors. The thick stromal layer of Gra CORE has been used in wounds with exposed bone and tendon to help promote granulation of deep tissue. The c matrix provides a physiological microenvironment for cells and proteins to promote cellular adhesion and migration addition to supporting growth factor function. Cytokines and growth factors, epidermal growth factor and transformi growth factor-beta3 in Grafix CORE mediate integral events such as angiogenesis, cell recruitment and proliferatio thawed and rinsed, Grafix CORE is applied to the wound and covered with a standard, non-adherent dressing. Ad applications are used as needed with frequency ranging from every 7-14 days until the wound is closed. Grafix CO supplied as a cryopreserved membrane mounted on nitrocellulose paper and is available in 2 sizes; 2cm x 2cm an 5cm. According to the manufacturer, the presence of MSCs in Grafix distinguishes it from all other skin substitutes

Grafix PRIME is an allograft derived from the amniotic membrane of human placental tissue used for the managem acute and chronic wounds including, but not limited to, diabetic foot ulcers, venous stasis ulcers and pressure ulce have not responded to standard of care therapy. Additional uses include burns, adhesion barriers, and Mohs proce Grafix PRIME has two layers (epithelial layer and stromal layer) and is comprised of a collagen rich membrane, mesenchymal stem cells, and anti-inflammatory cytokines and regenerative growth factors. The collagen matrix pr
physiological microenvironment for cells and proteins to promote cellular adhesion and migration in addition to sup

growth factor function. Cytokines and growth factors, epidermal growth factor and transforming growth factor-beta3

Grafix PRIME mediate integral events such as angiogenesis, cell recruitment and proliferation. Once thawed and r

Grafix PRIME is applied to the wound and covered with a standard, non-adherent dressing. Additional applications

used as needed with frequency ranging from every 7-14 days for up to 12 weeks or until the wound is closed. Graf

is supplied as a cryopreserved membrane mounted on nitrocellulose paper and is available in 3 sizes; 2cm x 2cm a

x 5cm, and 7.5cm x 15cm. According to the manufacturer, the presence of mesenchymal stem cells in Grafix disti

it from all other skin substitutes. Mesenchymal stem cells coordinate the tissue repair process through down regula

inflammation, by stimulating blood vessel formation (angiogenesis), and by supporting fibroblast and epithelial cell

resulting in rapid wound closure.

ENDURAGen

ENDURAGen Dermal Collagen implants are an acellular dermal matrix composed of cross-linked porcine dermal c

ENDURAGen Collagen Implant is a biomaterial made of a patented collagen matrix that has a structural architectu

to human tissue which provides a scaffold for fibroblast infiltration and vascularization. The enzymatic digestion and

linking manufacturing process is intended to make ENDURAGen Implants resistant to breakdown and absorption,

for a durable repair or reconstruction for soft tissue contouring and/or reinforcement procedures.

The ENDURAGen Collagen Implant was cleared as substantially equivalent to Permacol, originally approved by th

Food and Drug Administration on January 17, 2002. ENDURAGen Collagen Implants are specifically indicated for

tissue reinforcement, augmentation, and repair in plastic and reconstructive surgery of the head and face. The End

ENDURAGen Biomaterial is a sterile, off-white, moist, durable, flexible flat sheet of cross-linked porcine dermal

collagen and elastin fibers. The flexible material is intended to conform to anatomical shapes. ENDURAGen Implan

prehydrated and supplied in sterile sealed packets.

Peer-reviewed published evidence for the use of ENDURAGen is limited to case reports, small case series, and

evaluations of its biomechanical properties (Wu, et al., 2011; McCord, et al., 2008; Cillo, et al., 2007; Vural, et al.,

In 2008, McCord and group reported their experience using a new acellular porcine dermal graft (Enduragen) in 12

eyelids. A retrospective chart review was performed that included every case in which Enduragen was used by the

primary authors in the upper or lower eyelid. Patient demographics, type of procedure performed, and complication

reviewed. Sixty-nine patients and a total of 129 eyelids were included in the study. Eight procedures were spacers

upper lid, 104 were for spacers in the lower lid, and 17 were for lateral canthal reinforcement. Twenty-two procedure

in primary cases and 47 were in eyelids for secondary reconstructions, for a total of 69 patients. There were 13 eye

complications, for a complication rate of 10 percent. Nine cases required surgical revision, and there were four cas

infection, all of which were successfully treated with oral and topical antibiotics. According to the authors Endurage

proved to be a very satisfactory substitute for ear cartilage and fascia in eyelid surgery in both reconstructive and p

eyelid cases. It seems to be far superior to other commercially available tissue substitutes because of its predictab

structure and robust behavior. All problems that were encountered in this series seemed to be related more to tech

errors than to any deficiency in or reaction to the Enduragen. The increased strength, rigidity, and durability give s

the lids comparable to that obtained with autogenous ear cartilage and fascia.

Puros Dental

Puros Dermis Allograft Tissue Matrix (Zimmer Dental) is a natural biological matrix designed for soft tissue augme

periodontal/peri-implant soft tissue management, and guided tissue regeneration procedures (Snyder, et al., 2012)
tissue is treated using the Tutoplast sterilization procedure to kill bacteria, destroy cells, remove prions, and reduc

potential tissue rejection. The manufacturer’s Web site does not specifically state if Puros Dermis is derived from h

tissue, although this may be implied. Puros Dermis does not have 510(k) clearance or premarket approval, sugges

this is a human-derived tissue product.
Suprathel

Suprathel (Polymedics Innovations GmbH, Denkendorf, Germany) is a synthetic, biocompatible, and absorbable substitute made from polymers of lactic acid (Snyder, et al., 2012). The Suprathel membrane is applied once to a débrided wound surface and then breaks down during the healing process. According to the manufacturer, the process stimulates the healing process by increasing angiogenesis and rebuilding the dermis. The acidification of the wound bed by breakdown products is also supposed to have a bactericidal effect. Suprathel Wound Dressing was cleared for marketing under the 510(k) process in May 2009 for "temporary coverage of noninf skin defects, such as superficial wounds, under sterile conditions. The dressing is intended to maintain a moist wound healing environment. A moist wound healing environment allows autolytic débridement. The Suprathel Wound and Dressing is used in the management of: Partial and full thickness wounds; Pressure (stage I and IV) and venous ulcers caused by mixed vascular etiologies; venous stasis and diabetic ulcers; 1st and 2nd degree burns; Partial thickness burns; cuts and abrasions; acute wounds; trauma wounds; surgical wounds; superficial wounds; grafted wounds sites."

Epidex

Epidex (Euroderm AG, Baden-Dättwil, Switzerland) is a skin product generated from keratinocytes from the patient follicles. Epidermal sheets are created with silicone membrane support. Euroderm AG seems to be strictly a European company (Snyder, et al., 2012). None of its skin products seem to be sold in the United States and it has no listing FDA.

Matriderm

Matriderm (Dr. Suwelack Skin and Health Care AG) is a collagen-elastin matrix designed to support dermal regeneration after severe skin injuries. The matrix provides a structure for the invasion of native cells to regenerate the dermis. A placement, Matriderm is covered with a very thin, split-thickness, skin graft. The company Web site promotes Matriderm treating severe burn injuries (Snyder, et al., 2012). This product does not seem to be available in the United States not listed on the FDA Web site. A company called Suwelack Matrix Systems, Inc., Stony Brook, NY, USA, was established in 2005 but does not have any products listed on the FDA Web site.

LiquidGen

Skye LiquidGen is an allograft tissue matrix for use as an in vivo wound covering to fill tissue defects or localized inflammation. According to the manufacturer, LiquidGen can be applied directly to the surgical site, mixed with patient blood or used with other carriers to cover or fill soft tissue defects. LiquidGen is cryopreserved, and can be stored for 2 years. There are a lack of published clinical studies of the effectiveness of LiquidGen.

EPIFLO Transdermal Continuous Oxygen Therapy [TCOT] for Wound Healing

According to Ogenix, Inc., (Beachwood, OH), EPIFLO transdermal continuous oxygen therapy (TCOT) is an FDA-3 ounce, 24/7 oxygen therapy that effectively treats many chronic wounds (e.g., burns, diabetic foot ulcers, pressure wounds, and venous stasis ulcers). EPIFLO is designed to deliver oxygen directly to a wound. Unlike negative pressure wound therapy and hyperbaric chambers, chronic wound patients who receive EPIFLO do not have to endure dozens of treatment visits, each lasting upwards of 90 minutes, nor tolerate being tethered to a vacuum pump. EPIFLO is small enough to fit inside one's pocket; thus it is portable. http://www.ogenix.com/. In this regard, EPIFLO is not hyperbaric oxygen therapy.

Banks and Ho (2008) examined the effectiveness of the EpiFLO device as an adjunct treatment modality in chronic management. This study included 3 men with spinal cord injury (SCI), who each presented with a stage IV pressure ulcer in the pelvic region. They were treated with the EpiFLO device as an adjunct therapy. In Case 1, the patient was monitored for 9 weeks, whereas in Cases 2 and 3, the patients were monitored for 5 weeks. Healing was determin
weekly basis by wound dimensions and volume, which were compared before and after the intervention. Comparisons of pre- and post-treatment outcome measurements showed significant improvement with EpiFLO in each case. The authors concluded that EpiFLO seems to have had a positive effect on the healing rate of chronic pressure ulcers in individual cases. The findings of this small case-series study need to be validated by well-designed studies.

Bakri and colleagues (2008) tested the hypothesis that local transdermal delivery of oxygen improves oxygenation of sternotomy wounds after cardiac surgery; the secondary hypothesis was that supplemental inspired oxygen improves sternal wound PsqO(2). After undergoing cardiopulmonary bypass, a total of 30 patients randomly received (i) 2 E oxygen generators that provided oxygen at 6 ml/hr into an occlusive wound dressing, or (ii) identical-appearing inana generators. PsqO(2) and temperature were measured in the wound approximately 5-mm below the skin surface. and arterial oxygen (Pao(2)) were measured 1 hr after intensive care unit admission (Fio(2) = 60 %) and on the 1st post-operative mornings at Fio(2) of both 30 % and 50 % in random order. Data from 4 patients were excluded for technical reasons. Patient characteristics were similar in each group, as were type of surgery and peri-operative management. Increasing Fio(2) from 30 % to 50 % improved Pao(2) from 99 [84 to 116] to 149 [128 to 174] mm Hg (p = 0.001, mean [95 % CI]) and sternal wound PsqO(2) from 23 [16 to 33] to 27 [19 to 38] mm Hg (p < 0.001). In contrast, local oxygen delivery did not improve tissue oxygenation: 24 [14 to 41] versus 25 [16 to 41] mm Hg (p = 0.88). The authors concluded that additional inspired oxygen improved Pao(2) and sternal wound PsqO(2) after cardiopulmonary bypass surgery, and may, consequently, reduce infection risk. However, oxygen insufflated locally into an occlusive dressing did not improve wound PsqO(2) and, therefore, does not appear to be useful clinically in cardiac surgery patients to reduce sternal wound infections.

Schreml et al (2010) noted that oxygen is a pre-requisite for successful wound healing due to the increased demands for reparative processes such as cell proliferation, bacterial defense, angiogenesis and collagen synthesis. The authors that even though the role of oxygen in wound healing is not yet completely understood, many experimental and clinical observations have shown wound healing to be impaired under hypoxia. However, this review did not provide any clinical data to support the use of TCOT for wound healing.

In a prospective, controlled study, Blackman et al (2010) (i) examined the clinical efficacy of a pressurized topical oxygen therapy (TWO(2)) device in outpatients (n = 28) with severe diabetic foot ulcers (DFU) referred for care to a community wound care clinic; and (ii) evaluated ulcer recurrence rates after 24 months. A total of 17 patients received TWO (60-min treatment, pressure cycles between 5 and 50 mb) and 11 selected a silver-containing dressing changed at least twice per week (control). Patient demographics did not differ between treatment groups, but wound treatment group were more severe, perhaps as a result of selection bias. Ulcer duration was longer in the treated group (mean of 6.1 months, SD 5.8) than in the control group (mean of 3.2 months, SD 0.4) and mean baseline wound area 4.1 cm2 (SD 4.3) in the treatment and 1.4 cm2 (SD 0.6) in the control group (p = 0.02). Fourteen of 17 ulcers (82. the treatment group and 5 of 11 ulcers (45.5 %) in the control group healed after a median of 56 and 93 days, resp (p = 0.04). No adverse events were observed and there was no re-occurrence at the ulcer site after 24 months’ follow-up either group. The authors noted that although the absence of randomization and blinding may have under- or overestimated the treatment effect of either group, the significant differences in treatment outcomes confirmed the potential benefits of TWO(2) in the management of difficult-to-heal DFUs. Moreover, they stated that clinical efficacy and cost-effectiveness studies as well as studies to elucidate the mechanisms of action of TWO(2) are needed.

In a pilot study, Woo et al (2012) evaluated the effectiveness of TCOT on chronic wound healing in 9 patients. After 4 weeks of treatment, mean wound surface area and wound infection check-list scores were significantly reduced. S bacterial damage were also reduced. The authors concluded that findings from this study suggested TCOT may be beneficial in promoting chronic wound healing. These preliminary findings from a small pilot study need to be validated in well-designed studies.

Also, an UpToDate review on “Basic principles of wound management” (Armstrong and Meyr, 2013) does not mention the use of transdermal continuous oxygen therapy as a therapeutic option.

Gore Bio-A Fistula Plug
In a retrospective review of a database of patient records, Heydari et al (2013) evaluated the safety and effectiveness of a new synthetic fistula plug made of bioabsorbable polymers in the treatment of crypto-glandular anal fistula. A total of 48 patients (39 men and 9 women; mean age of 49.9 years) with 49 fistulas were treated with the synthetic plug between November 2009 and March 2012. Types of fistula were as follows: 24 superficial trans-sphincteric, 18 mixed trans-sphincteric, 5 deep trans-sphincteric, and 1 medium inter-sphincteric. The fistula tract was cleaned by using curettage, and a synthetic plug was sized to fit the tract and inserted. A draining seton was used pre-operatively in the patient. Main outcome measures were complete closure of the fistula, with no discharge/residual fistula (verified by anal ultrasonography), perineal pain level (assessed with a visual analog scale), and fecal continence. Follow-up was conducted at 1 week and 1, 3, 6, and 12 months post-operatively. The overall healing rate was 69.3% (34/49 fistulas) in 33/48 patients; 8 patients (24.2%) had healing by 3 months after surgery, 21 patients (63.6%) had healed by 6 months, and 4 patients (12.1%) had healed by 12 months. By 3 months, no patient had perineal pain or fecal incontinence. The authors concluded that in patients with crypto-glandular anal fistulas, the use of a bioabsorbable synthetic plug provided a high rate of healing without causing fecal incontinence or other major adverse effects. Moreover, they suggested that larger and randomized studies of this treatment are needed. Major drawbacks of this study included small number of patients and the retrospective non-randomized nature of the study.

Allowrap

AlloWrap DS and AlloWrap Dry consist of human amniotic membrane that has been processed using a proprietary technology, and is designed with two layers of amniotic tissue with the epithelial layers facing outward (CMS, 2014). AlloWrap DS tissue allograft is surgically applied to the skin. Most wounds respond with one application of AlloWrap DS however it can be reapplied if needed. AlloWrap DS is supplied in the following sizes: 2cm x 2cm; 2cm x 4cm; 4cm x 4cm; and 4cm x 8cm. AlloWrap Dry tissue is surgically applied to the skin and is supplied in a range of sizes: 1 x 1cm; 1 x 1.5 x 2cm; 1 x 4cm; 2 x 2cm; 2 x 4cm; 4 x 4cm; 6 x 6cm; and 4 x 8cm. It can be used in a variety of procedures as a cover or barrier.

Amnioband and Guardian

AmnioBand and Guardian are human tissue allografts made of donated placental membrane (CMS, 2014). The all comprised of native human amnion and chorion. The amnion and the chorion together create a membrane in which amnion serves as a covering epithelium. The membrane is hydrophilic and can be used in a hydrated or dehydrated state. Although marketed under two different brand names, the products are identical. AmnioBand and Guardian are allo membrane coverings intended for interior or exterior wounds including use as a covering for the surgical site. Usage includes various wounds and ulcers and other soft tissue defects. Both AmnioBand and Guardian are processed packaged under aseptic conditions, and are available in the same five sizes: 2x2 cm, 3x4 cm, 3x8 cm, 4x4 cm, and 4x8 cm.

Dermapure

DermaPure is a single layer decellularized dermal allograft for the treatment of acute and chronic wounds such as foot ulcers, venous stasis ulcers, and additional wounds that are refractory to more conservative care (CMS, 2014). DermaPure is derived from split thickness grafts harvested from cadaveric human tissue donors. DermaPure is supplied in the following allograft sizes: 2x3cm, 3x4cm, and 4x6cm.

Dermavest

Dermavest is a human placental connective tissue matrix intended to replace or supplement damaged or inadequacy integumental tissue (skin substitute) and re-stabilize a debrided wound (CMS, 2014). Dermavest is comprised of a source of human connective tissue than the other products. It has up to 5 times more (mg) human connective tissue per square cm. It is supplied as a single dehydrated, 2cmx3cm sterile pad.
Biovance

Biovance is a decellularized dehydrated human amniotic membrane (DDHAM) used in the repair or replacement of damaged or lost soft tissue (CMS, 2014). This allograft is derived from the placental amnion and includes epithelial stromal components that provide a collagen-rich extracellular matrix. In addition to the natural scaffold being a physiologic conduit for infiltrating cells, Biovance contains extracellular matrix proteins such as elastin, fibronectin, proteoglycans, glycosaminoglycans, and laminins important in extracellular matrix strength, cell attraction, and migration. Biovance is sterilized and available in four sizes: 1x2 cm, 2x3 cm, 4x4 cm and 6x6 cm.

NeoxFlo

NeoxFlo is a human amniotic membrane and umbilical cord product in particulate form obtained from donated human placental tissue (CMS, 2014). It is intended to be used as a wound covering for dermal ulcers and defects such as ulcers. NeoxFlo can be prepared by the physician as a suspension with normal saline for topical application or applied dry form topically. It is especially intended for use in difficult-to-reach wounds that are either irregularly shaped or too small for NeoxFlo. It is supplied in a single-use vial in three different doses: 25 mg, 50 mg, and 100 mg. The typical chronic wound patient will receive an average of 1-2 applications of NeoxFlo to facilitate healing. The dosage depends on the wound size.

ClarixFlo

ClarixFlo is a biological particulate amniotic membrane and umbilical cord product derived from human placental tissue (CMS, 2014). It is intended to facilitate replacement or supplement damaged or inadequate integumental tissue. It is supplied in a single-use vial in three different doses: 25 mg, 50 mg, and 100 mg. It is prepared by the physician as a suspension with normal saline for injection into the tissue. The typical patient will receive one treatment of ClarixFlo to facilitate healing. Dosing is dependent upon the size of the damaged or inadequate integumental tissue.

NEOX 100

NEOX 100 is a cryopreserved skin graft substitute comprised of human amniotic membrane used as a wound covering in chronic non-healing dermal wounds, such as diabetic foot and venous leg ulcers, to modulate inflammation and enhance healing (CMS, 2014). NEOX 100 is supplied in three different sizes: 2 x 2 cm, 4.0 x 4.0 cm, and 7.0 x 7.0 cm. NEOX 100 is administered by placing the appropriately sized product to completely cover the wound bed after debridement, and secured to the wound edges using sutures or surgical staples, at the discretion of the physician.

NEOX 1k

NEOX 1k is a non-implantable biological skin graft substitute comprised of human amniotic membrane retrieved from electively donated umbilical cords (CMS, 2013). NEOX 1k is used as a wound covering in chronic non-healing dermal wounds, such as diabetic ulcers, to modulate inflammation and encourage healing. It is supplied as a single-use graft in four different sizes: 1.5 x 1.5 cm; 2.5 x 2.5 cm; 4.0 x 3.0 cm; 6.0 x 3.0 cm. NEOX 1k is administered by placing the appropriately sized product to completely cover the wound bed after debridement, and secured to the wound edges using sutures or surgical staples, at the discretion of the physician.

Revitalon

Revitalon is a human tissue allograft made of donated amniotic membrane derived from the inner lining of donated placenta. Revitalon can be used as a covering for full-thickness wounds, damaged membranes, and as a dressing for burns. It is comprised of native human amnion and chorion consisting of collagen types I, III, IV, V, VI, laminin, fibronectin, fibronidogen, and proteoglycans. The amnion is comprised of five layers of collagen and fibronectin and is tough, transparent, nerve-free, and non-vascular. Revitalon allografts are supplied in a single-sized package and provided in the following four sizes: 1 cm round dot, 2x2 cm, 4x4 cm, and 4x6 cm.

Marigen
Marigen is an extra cellular matrix xenograft made from fish (piscine) dermis (CMS, 2014). Marigen contains natural insoluble proteins such as collagen as well as proteoglycans, glycosaminoglycans, and fibronectin. Marigen is used wound covering and wound matrix for full-thickness wounds and burns, or as a covering for damaged membranes. supplied in the following sizes: 3x3.5cm, 3x7cm, and 7x10cm.

Affinity

Affinity, amniotic fluid membrane allograft, is minimally processed for clinical use in wound repair and healing (CMS. Affinity is comprised of the amniotic epithelial layer, the amniotic basement membrane, and the amniotic stroma. The membrane contains (1) collagen types III, IV, laminin and proteoglycans; (2) cross-linked hyaluronic acid; (3) trophic proteins; (4) growth factors; (5) Tissue Inhibitors of Matrix metallo-proteinases (TIMPs); and (6) multipotential cells. is intended to be applied as an on-lay graft for acute and chronic wounds, including, but not limited to, neuropathic venous stasis ulcers, pressure ulcers, burns, post-traumatic wounds and post-surgical wounds. The product will be packaged for single-use and available in the following size: 2.5 x 2.5 cm.

Nushield

Nushield is produced from human placental membrane and includes the amniotic epithelial layer, the amniotic base membrane, the amniotic stroma, the chorionic basement membrane, and the chorionic stroma. This membrane contains collagen types III, IV, laminin and proteoglycans; (2) cross-linked hyaluronic acid; (3) trophic proteins; (4) growth factors; (5) Tissue Inhibitors of Matrix metallo-proteinases (TIMPs); and (6) multipotential cells. Nushield is intended to be applied as an on-lay graft for acute and chronic wounds, including, but not limited to, neuropathic ulcers, venous stasis ulcers pressure ulcers, burns, post-traumatic wounds and post-surgical wounds. The product will be sterilized packaged for use and available in the following sizes: 2x3 cm, 4x4 cm, and 6x6 cm. Nushield will also be expandable (meshed) for use.

Architect ECM and Architect PX

Architect ECM is a "medical device comprised almost entirely of type I collagen that has been stabilized and sterilized to enhance ease of use and enhance durability as a wound dressing. It is made from equine pericardium and utilized a patented collagen stabilizing technology called “BriDGE” that supports rapid healing by: not promoting an inflammatory response serving as a temporary matrix that provides a platform for cell migration; helping to optimize the wound-healing environment; and facilitating cellular activity. The applicant comments that a new code is warranted because Architect will become the only equine pericardium sourced ECM wound dressing available on the market since the withdrawal of Synovis' Unite Biomatrix in June, 2012.” According to the applicant, "since HCPCS wound dressings are product and brand-specific, a new code is needed for Architect™ ECM”.

Architect PX is a partially stabilized extracellular matrix (ECM) comprised of equine pericardium that is indicated for local management of moderately to heavy exuding wounds (CMS, 2014). By partially stabilizing its equine pericardium ECM, Architect PX can maintain its natural ECM tissue regeneration properties longer on the wound. The manufacturer claims that “this "partially" stabilized extracellular matrix more quickly adheres to the wound bed than Architect, the fitting more closely into established wound care protocol”. Products that adhere more slowly may require more training to achieve optimal results. Architect PX can limit the inflammatory response, thereby enabling the ECM components to support tissue regeneration longer during the healing process. Architect PX is also engineered to possess structural and functional proteins which can stimulate and support tissue regeneration for a longer duration than no stabilized products.

Excellagen

According to the manufacturer, Excellagen (formulated bovine full length fibrillin collagen gel 2.6%) is indicated for management of wounds including: partial and full thickness wounds, pressure ulcers, venous ulcers, diabetic ulcers chronic vascular ulcers, tunnelled/undermined wounds, surgical wounds (donor sites/graft, post-Moh's surgery, post-surgery, podiatric, wound dehiscence), trauma wounds (abrasions, lacerations, second degree burns and skin tear
draining wounds (CMS, 2013). It is an acellular biological modulator designed for platelet activation (when applied debrided wounds and in the presence of a small influx of blood), resulting in the localized release of platelet-derive factors that are essential to wound healing. Excellagen also provides a substrate and scaffold for cellular adhesion migration, and proliferation to promote granulation tissue growth. Excellagen is supplied as a sterile gel in a packag ready-to-use 1 mL glass syringes with fill volume of 0.5cc.

AmnioExCel and BioDExCel

AmnioExCel (also marketed under trade name BioDExCel) is a dehydrated human amnion membrane allograft co of an epithelial layer and astromal layer specifically processed for repair or replacement of lost or damaged derma (CMS, 2013). The product contains collagens and extracellular substrates to include growth factors, connective prot cytokines that support and promote angiogenesis, tissue granulation and epithelialization for the repair and replace injured tissue. The collagen in the allograft provides an extracellular matrix which acts as a natural scaffold for cell attachment and a structural tissue matrix that facilitates cell migration and proliferation. The natural composition of amniotic membrane extracellular matrix is preserved without cross-linkage, thereby providing improved graft incor by the body. Usage includes, but is not limited to, allograft application to wounds including traumatic injuries, burns surgical wounds; complex, chronic and acute wounds, such as diabetic ulcers, venous and arterial ulcers, pressure or cutaneous ulcers; wounds with exposed tendon, muscle, bone or other vital structures and other soft tissue defe AmnioExCel and BioDExCel are sterilely packaged for single use and each product is available in the same 5 sizes cm; 2 x 3 cm; 2 x 6 cm; 4 x 4 cm; and 4 x 8 cm.

BioDfence

BioDfence is a human placental-derived amniotic tissue based allograft composed of an epithelial layer and a stromal layer specifically processed for the repair and replacement of lost or damaged dermal tissue or the prohibition of adhesio formation (CMS, 2013). This allograft contains collagens and extracellular substrates to include growth factors, con proteins, and cytokines that preserve planes of tissue while inhibiting incorporation of the vital structure(s) into the o developing tissue. The collagen acts as a scaffold for cellular attachment and a structural tissue matrix that facilitat migration and proliferation. While this product was initially used in the acute care inpatient setting in connection wit neurosurgical, orthopedic and spine surgical procedures; physicians and surgeons are now consistently reporting p outcomes in individual wound care cases. The dehydrated (and the hydrated) human amnion allografts are intende repair or replacement of lost or damaged dermal tissue. Usage includes, but is not limited to, allograft application to including: traumatic injuries, burns, Mohs procedures or surgical wounds; complex chronic and acute wounds, suc diabetic ulcers venous and arterial leg ulcers, pressure ulcers or cutaneous ulcers; wounds with exposed vital struc e.g., tendon, bone, blood vessels; and other soft tissue defects. The product also provides adhesion barrier proper when necessary. BioDfence is packaged for single use in 7 sizes: 1.5 x 2cm; 2 x 3 cm; 2 x 6 cm; 4 x 4 cm; 4 x 8 cm 10 cm; and 15 x 15 cm. According to the manufacturer, the differences between BioDfence and BioDfence DryFlex (see below) are as follows: BioDfence DryFlex is dehydrated, making it less sticky, and a better choice for use with instrumentation. BioDfence is hydrated, which makes it a bit sticky and glue may not be needed, which may make to use for procedures such as on corneal defects. Both BioDfence DryFlex and BioDfence have a cross-linked bas membrane which is not penetrable and becomes a biologic barrier. It is placed over exposed vital structures, such nerves, blood vessels or other tissues to protect them and keep them intact.

BioDfence DryFlex

BioDfence DryFlex is a human placental-derived amniotic tissue based allograft composed of an epithelial layer an stromal layer specifically processed for the repair and replacement of lost or damaged dermal tissue or the prohibit adhesion formation (CMS, 2013). This allograft contains collagens and extracellular substrates to include growth fa connective proteins, and cytokines that preserve planes of tissue while inhibiting incorporation of the vital structure the overlying developing tissue. The collagen acts as a scaffold for cellular attachment and a structural tissue matr facilitates cell migration and proliferation. While this product was initially used in the acute care inpatient setting in connection with neurosurgical, orthopedic and spine surgical procedures, physicians and surgeons are now using i
individual wound care cases. The dehydrated (and the hydrated) human amnion allografts are intended for the replacement of lost or damaged dermal tissue. Usage includes, but is not limited to, allograft application to wounds including: traumatic injuries, burns, Mohs procedures or surgical wounds; complex chronic and acute wounds, such as diabetic ulcers, venous and arterial leg ulcers, pressure ulcers or cutaneous ulcers; wounds with exposed vital structures e.g., tendon, bone, blood vessels; and other soft tissue defects. The product also provides adhesion barrier properties when necessary.

BioDfence DryFlex is packaged for single use in 5 sizes: 1.5 x 2 cm; 2 x 3 cm; 2 x 6 cm; 4 x 4 cm; 8 cm. The differences between BioDfence DryFlex and BioDfence are as follows: BioDfence DryFlex is dehydrated, it a better choice for use with instrumentation. BioDfence is hydrated, which may not be needed, which may make it a better choice for use with procedures such as corneal defects. Both products have a cross-linked basement membrane which is penetrable and becomes a biologic barrier. It is placed over exposed vital structures, such as nerves, blood vessels, other tissues to protect them and keep them intact.

AmnioMatrix and BioDMatrix
AmnioMatrix and BioDMatrix are a viable human multipotential placental allografts composed of morselized amnio membrane and amniotic fluid components recovered from the same human donor (CMS, 2013). The amniotic membrane is separated from the placenta and morselized into particulate form, then combined with amniotic fluid components to the allograft. The processing method is intended to preserve the structural properties of the collagen; growth factor inherent cellular materials and matrix present in the tissue to create a micro-scaffold to be used to aid in the wound process. AmnioMatrix (also to be marketed under the trade name BioDMatrix) is intended for the treatment of wounds including but not limited to surgical wounds, burns or traumatic injury; and chronic and acute wound conditions. The allograft is also used to augment the local treatment of soft tissue defects for the supportive treatment of wound-associated bone defects. The product may be mixed with normal saline for application to surgical sites and open, complex or wounds or mixed with the recipient's blood to fill soft tissue defects and wound-associated bone defects. AmnioMatrix is cryopreserved and supplied in injectable form in sterile vials. It is available in 4 sizes: small (0.25 cc); medium (0.5 cc); large (1.0 cc); and extra-large (3.0 cc).

XCM Biologic Tissue Matrix
XCM Biologic Tissue Matrix is a sterile, non-cross-linked 3-D matrix derived from porcine dermis. It provides a sup structure for cellular migration and as such the matrix is incorporated into the surrounding tissue. It is “indicated for general surgical procedures for the reinforcement and repair of soft tissue where weakness exists including, but not limited to: defect of the thoracic wall, suture line reinforcement, and muscle flap reinforcement; urogynecological surgical reinforcement including but not limited to, rectal and vaginal prolapse, reconstruction of the pelvic floor, hernia repair, tissue reconstructive procedures including plastic and reconstructive surgical application, and for reinforcement of tissues, which are repaired by suture or suture anchors, including but not limited to, rotator cuff, patellar, Achilles, b quadriceps and other tendons.” XCM Biologic Tissue Matrix is supplied sterile (hydrated) in a foil liner pouch. It do not require refrigeration, or any preparation before use.

Repriza
Repriza is a biologic graft intended for use in a single application (CMS, 2013). It is used as a skin substitute in the treatment of various types of wounds including burns, chronic ulcers, and surgical wounds. In addition to its use as substitute, Repriza may also be used as an implant during plastic and reconstructive surgeries wherever an acellular dermal matrix may be used. For example, it may be used to support implants in a defined pocket such as in breast reconstruction, and abdominal wall reconstruction procedures. The quantity and size of product used varies based on the surgical application, individual patient circumstances, and the dimensions of the wound or surgical site. It is available in standard sizes with custom sizes and thicknesses available upon request. Repriza is used in the same indications same manner as both Alloderm and Graft Jacket. However, there is a significant difference in cost of the materials (2013). In addition, Repriza is sterile, hydrated and ready to use on opening its package without soaking or washing. It may be stored at ambient temperature. It has no “sidedness”, so either side may be approximated to tissues of the or burn.
TenSIX

TenSIX is an acellular dermal matrix derived from aseptically processed cadaveric human skin tissue that is terminally sterilized. It is made from human donor skin, which undergoes a process that removes the epidermis and dermal components, thereby creating an acellular dermis. "Human cadaveric dermal tissue" is referred to as acellular dermal allograft. TenSIX acts as a scaffold to facilitate angiogenesis and migration of growth factors that stimulate cell migration. Once rehydrated, the allograft can be applied topically to the wound and secured in the preferred manner of choice by the physician. This is accomplished by the suturing or stapling the allograft to the skin surrounding the wound. TenSIX allograft tissue can be used for the repair or replacement of damaged or inadequate integumental tissue or for the other homologous cells of the integument. Most notably, it will be used for wounds resulting from chronic diabetic foot ulcers.

FortaDerm and FortaDerm Antimicrobial

FortaDerm is a single-layer fenestrated sheet of porcine collagen. FortaDerm is a skin substitute intended for the management of wounds including: partial and full-thickness wounds, pressure ulcers, venous ulcers, diabetic ulcer chronic vascular ulcers, tunneled/undermined wounds, surgical wounds (donor sites/grafts, post-Moh's surgery, post-Moh's surgery, wound dehiscence), trauma wounds (abrasions, lacerations, second-degree burns, and skin tears) and diabetic wounds. It is supplied dry in sheet form in sizes ranging from 5x5 cm to 12x36 cm. FortaDerm is packaged in sterile single pouches and is administered by surgically applying and fixing it to a wound using sutures or other fixation methods. FortaDerm is used similarly to other collagen wound dressings.

FortaDerm Antimicrobial PHMB is a sterile single-use sheet dressing made of collagen matrix and is coated with polyhexamethylene biguanide hydrochloride (PHMB) (CMS, 2014). It is intended for the management of wounds with an effective barrier to resist microbial colonization within the dressings and reduce microbes penetrating through the dressing. It is supplied dry in sheet form in sizes ranging from 4x4 cm to 12x36 cm. FortaDerm Antimicrobial PHMB is packaged in sterile, sealed single pouches. FortaDerm Antimicrobial PHMB Wound Dressing is a skin substitute designed for use on acute and chronic, partial and full-thickness wounds. It is surgically applied and fixed to a wound using sutures or other fixation method based on the size of the wound being treated.

Miscellaneous Wound Care Products

The use of porcine-derived decellularized collagen products (e.g., Collamend, Cuffpatch™, Pelvicol®, Pelvicol® and Strattice™) has been proposed for use in various surgical procedures and in the treatment of dermal wounds. Currently, there is insufficient evidence to allow for proper evaluation regarding the effectiveness of these products. The use of porcine-derived polypropylene composite wound dressing (e.g., Avaulta Plus™) in the clinical setting has not been established. Until comparative studies of this product have been made available, a thorough evaluation of its safety and effectiveness cannot be completed.

CPT Codes / HCPCS Codes / ICD-9 Codes

Other CPT codes related to the CPB:

15271 - 15278 Application of skin substitute grafts

Other HCPCS codes related to the CPB:

C5271 - C5274 Application of low cost skin substitute graft to trunk, arms, legs

C5275 - C5278 Application of low cost skin substitute graft to face, scalp, eyelids, mouth, neck, ears, or genitalia, hands, feet, and/or multiple digits

http://qawww.aetna.com/cpb/medical/data/200_299/0244_draft.html 01/28/2015
Medically necessary wound care treatments:

Other CPT codes related to the CPB:

11042, 11045 Debridement; subcutaneous tissue
11043, 11046 Debridement; muscle and/or fascia
11044, 11047 Debridement; bone
11047 bone, each additional 20 sq cm, or part thereof
15002 - 15005 Surgical preparation or creation of recipient site
15777 Implantation of biologic implant (e.g., acellular dermal matrix) for soft tissue reinforcement breast, trunk) (List separately in addition to code for primary procedure)
97597 Debridement (e.g., high pressure waterjet with/without suction, sharp selective debridement scissors, scalpel and forceps), open wound, (e.g., fibrin, devitalized epidermis and/or dermal exudate, devris, biofilm), including topical application(s), wound assessment, use of a w when performed and instructions (s) for ongoing care, per session, total wound(s) surface first 20 sq cm or less
97598 each additional 20 sq cm, or part thereof (List separately in addition to code for primary procedure)

Apligraf (graftskin):

HCPCS codes covered if selection criteria are met:

Q4101 Apligraf, per sq cm

ICD-9 codes covered if selection criteria are met:

249.00 - 249.91 Secondary diabetes mellitus
250.00 - 250.93 Diabetes mellitus
454.0 Varicose veins of lower extremities with ulcer
454.2 Varicose veins of lower extremities with ulcer and inflammation
459.31 Chronic venous hypertension with ulcer
459.33 Chronic venous hypertension with ulcer and inflammation

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

041.00 - 041.89 Infectious organism
686.8 - 686.9 Other and unspecified local infection of skin and subcutaneous tissue
728.86 Necrotizing fasciitis
730.00 - 730.99 Osteomyelitis
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>731.8</td>
<td>Other bone involvement in diseases classified elsewhere</td>
</tr>
<tr>
<td>785.4</td>
<td>Gangrene</td>
</tr>
<tr>
<td>870.0 - 897.7</td>
<td>Open wounds</td>
</tr>
</tbody>
</table>

Other ICD-9 codes related to the CPB:

<table>
<thead>
<tr>
<th>Code Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>707.10 - 707.19</td>
<td>Ulcer of lower limbs, except decubitus [* note per ICD-9 guidelines requires 250.80 - 250 diabetic]</td>
</tr>
</tbody>
</table>

Dermagraft:

HCPCS codes covered if selection criteria are met:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4106</td>
<td>Dermagraft, per sq cm</td>
</tr>
</tbody>
</table>

ICD-9 codes covered if selection criteria are met:

<table>
<thead>
<tr>
<th>Code Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>249.00 - 249.91</td>
<td>Secondary diabetes mellitus</td>
</tr>
<tr>
<td>250.00 - 250.93</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>757.39</td>
<td>Other specified anomalies of skin [dystrophic epidermolysis bullosa]</td>
</tr>
</tbody>
</table>

ICD-9 codes not covered for indications listed in the CPB (not all-inclusive):

<table>
<thead>
<tr>
<th>Code Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>041.00 - 041.89</td>
<td>Infectious organism</td>
</tr>
<tr>
<td>440.24</td>
<td>Atherosclerosis of the extremities with gangrene</td>
</tr>
<tr>
<td>454.2</td>
<td>Varicose veins of lower extremities with ulcer and inflammation</td>
</tr>
<tr>
<td>686.8 - 686.9</td>
<td>Other and unspecified local infection of skin and subcutaneous tissue</td>
</tr>
<tr>
<td>728.86</td>
<td>Necrotizing fasciitis</td>
</tr>
<tr>
<td>730.00 - 730.99</td>
<td>Osteomyelitis</td>
</tr>
<tr>
<td>731.8</td>
<td>Other bone involvement in diseases classified elsewhere</td>
</tr>
<tr>
<td>785.4</td>
<td>Gangrene</td>
</tr>
</tbody>
</table>

Other ICD-9 codes related to the CPB:

<table>
<thead>
<tr>
<th>Code Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>707.10 - 707.19</td>
<td>Ulcer of lower limbs, except decubitus [* note per ICD-9 guidelines requires 250.80 - 250 diabetic]</td>
</tr>
</tbody>
</table>

Systemic Hyperbaric Oxygen Therapy (HBOT):

CPT codes covered if selection criteria are met:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>99183</td>
<td>Physician or other qualified health care professional attendance and supervision of hyperoxygen therapy, per session</td>
</tr>
</tbody>
</table>

HCPCS codes covered if selection criteria are met:
C1300 Hyperbaric oxygen under pressure, full body chamber, per 30 minute interval

ICD-9 codes covered if selection criteria are met:

249.70 - 249.71 Secondary diabetes mellitus with peripheral circulatory disorders
249.80 - 249.81 Secondary diabetes mellitus with other specified manifestations
250.70 - 250.73 Diabetes with peripheral circulatory disorders
250.80 - 250.83 Diabetes with other specified manifestations
454.2 Varicose veins of lower extremities with ulcer and inflammation

ICD-9 codes not covered for indications listed in the CPB:

686.8 - 686.9 Other and unspecified local infection of skin and subcutaneous tissue
941.00 - 949.5 Burns

Transcyte:

No specific code

ICD-9 codes covered if selection criteria are met:

941.00 - 949.5 Burns

Orcel:

No specific code

HCPCS codes covered if selection criteria are met:

Q4100 Skin substitute, not otherwise specified

ICD-9 codes covered if selection criteria are met:

757.39 Other specified anomalies of skin [dystrophic epidermolysis bullosa]
941.00 - 949.5 Burns

Biobrane biosynthetic dressing:

No specific code

CPT codes covered if selection criteria are met:

15050 - 15261 Autograft/tissue cultured autograft

ICD-9 codes covered if selection criteria are met:

941.00 - 949.5 Burns

Integra Dermal Regeneration Template, Integra Bilayer Matrix Wound Dressing, and Integra Meshed Bilayer Wound Matrix:
HCPCS codes covered if selection criteria are met:

C9363 Skin substitute, Integra Meshed Bilayer Wound Matrix, per square centimeter
Q4104 Integra Bilayer Matrix Wound Dressing (BMWD), per sq sm
Q4105 Integra Dermal Regeneration Template (DRT), per sq cm

ICD-9 codes covered if selection criteria are met:

941.00 - 949.5 Burns

Alloderm:

Other CPT codes related to the CPB:

19357 - 19369 Breast reconstruction
23420 Reconstruction of complete shoulder (rotator) cuff avulsion, chronic (includes acromioplasty)
23470-23472 Arthroplasty, glenohumeral joint
23473 - 23474 Revision of total shoulder arthroplasty, including allograft when performed
24344 Reconstruction lateral collateral ligament, elbow, with tendon graft (includes harvesting
24345 Repair medical collateral ligament, elbow, with local tissue
24346 Reconstruction medical collateral ligament elbow, with tendon graft (includes harvesting graft)
24360 - 24363 Arthroplasty, elbow
24365 - 24366 Arthroplasty, radial head
24370 - 24371 Revision of total elbow arthroplasty, including allograft when performed
25320 Capsulorrhaphy or reconstruction, wrist, open (eg, capsulodesis, ligament repair, tendon transfer or graft) (includes synovectomy, capsulotomy and open reduction) for carpal ins
25337 Reconstruction for stabilization of unstable distal ulna or distal radioulnar joint, secondary soft tissue stabilization (eg, tendon transfer, tendon graft or weave, or tenodesis) with or open reduction of distal
25390 - 25393 Osteoplasty, radius and/or ulna
25441 - 25442 Arthroplasty, with prosthetic replacement; distal radius and distal ulna
25446 Arthroplasty, with prosthetic replacement; distal radius and partial or entire carpus (total
26135 Synovectomy, metacarpophalangeal joint including intrinsic release and extensor hood reconstruction, each digit
26140 Synovectomy, proximal interphalangeal joint, including extensor reconstruction, each interphalangeal joint
26390 Excision flexor tendon, with implantation of synthetic rod for delayed tendon graft, hand or finger, each rod
26490 - 26496 Opponensplasty
26500 - 26502 Reconstruction of tendon pulley, each tendon
26530 - 26531 Arthroplasty, metacarpophalangeal joint
26535 - 26536 Arthroplasty interphalangeal joint
26541 - 26542 Reconstruction, collateral ligament, metacarpophalangeal joint, single
26545 Reconstruction, collateral ligament, interphalangeal joint, single, including graft, each joint
26548 Repair and reconstruction, finger, volar plate, interphalangeal joint
26550 Pollicization of a digit
26551 -26554 Transfer, toe-to-hand with microvascular anastomosis
26555 Transfer, finger to another position without microvascular anastomosis
26556 Transfer, free toe joint, with microvascular anastomosis
26587 Reconstruction of polydactylous digit, soft tissue and bone
42410 - 42426 Excision of parotid tumor or parotid gland

HCPCS codes covered if selection criteria are met:

Q4116 Alloderm, per square centimeter

ICD-9 codes covered if selection criteria are met:

174.0 - 175.9 Malignant neoplasm of breast
198.81 Secondary malignant neoplasm of breast
233.0 Carcinoma in situ of breast
V10.3 Personal history of malignant neoplasm of breast
V15.3 Personal history of irradiation
V16.3 Family history of malignant neoplasm of breast
V16.41 Family history of malignant neoplasm of ovary
V45.71 Acquired absence of breast
V84.01 Genetic susceptibility to malignant neoplasm of breast
V84.02 Genetic susceptibility to malignant neoplasm of ovary

ICD-9 codes not covered for indications listed in the CPB (not all inclusive):
550.00 - 553.9 Hernia
705.22 Secondary focal hyperhidrosis [Frey's syndrome]

Artiss:

HCPCS codes covered if selection criteria are met:

C9250 Human plasma fibrin sealant, vapor-heated, solvent-detergent (Artiss), 2ml

ICD-9 codes covered if selection criteria are met:

941.00 - 949.5 Burns

Oasis Wound Matrix:

HCPCS codes covered if selection criteria are met:

Q4102 Oasis Wound Matrix, per sq cm

ICD-9 codes covered if selection criteria are met:

249.00 - 249.03 Secondary diabetes mellitus [difficult-to-heal diabetic partial and full-thickness ulcers of t lower extremity that have failed standard wound therapy of a least 4 weeks duration]

250.00 - 250.93 Diabetes mellitus with other specified manifestations [difficult-to-heal diabetic partial and thickness ulcers of the lower extremity that have failed standard wound therapy of a leas weeks duration]

454.0 Varicose veins of lower extremities with ulcer [difficult-to-heal chronic venous partial and full-thickness ulcers of the lower extremity that have failed standard wound therapy of a leas weeks duration]

454.2 Varicose veins of lower extremities with ulcer and inflammation [difficult-to-heal chronic partial and full-thickness ulcers of the lower extremity that have failed standard wound th of a least 4 weeks duration]

459.31 Chronic venous hypertension with ulcer [difficult-to-heal chronic venous partial and full-thickness ulcers of the lower extremity that have failed standard wound therapy of a leas weeks duration]

459.33 Chronic venous hypertension with ulcer and inflammation [difficult-to-heal chronic venou partial and full-thickness ulcers of the lower extremity that have failed standard wound th of a least 4 weeks duration]

Graftjacket Regenerative Tissue Matrix:

HCPCS codes covered if selection criteria are met:

Q4107 Graftjacket, per sq cm

ICD-9 codes covered if selection criteria are met:
249.00 - 250.93 Diabetes mellitus [covered for treatment of full-thickness diabetic foot ulcers greater than week duration that extend through the dermis, but without tendon, muscle, joint capsule exposure]

Other ICD-9 codes related to the CPB:

707.10 - 707.19 Ulcer of lower limb, except decubitus [*note per ICD-9 guidelines requires 250.80 - 250.8 diabetic]

Episcl:

No specific code

CPT codes covered if selection criteria are met:

15150 - 15157 Tissue cultured skin autograft, face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, h feet, and/or multiple digits

ICD-9 codes covered if selection criteria are met:

941.30 - 941.59 Burn of face, head, and neck, full-thickness and deep necrosis [deep dermal or full thickn burns comprising a total body surface area of greater than or equal to 30%]

942.30 - 942.59 Burn of trunk, full-thickness and deep necrosis [deep dermal or full thickness burns com a total body surface area of greater than or equal to 30%]

943.30 - 943.59 Burn of upper limb, except wrist and hand, full-thickness and deep necrosis [deep derma thickness burns comprising a total body surface area of greater than or equal to 30%]

944.30 - 944.59 Burn of wrist and hand, full-thickness and deep necrosis [deep dermal or full thickness b comprising a total body surface area of greater than or equal to 30%]

945.30 - 945.59 Burn of lower limb(s), full-thickness and deep necrosis [deep dermal or full thickness bur comprising a total body surface area of greater than or equal to 30%]

946.30 - 946.59 Burn of multiple specified sites, except wrist and hand, full-thickness and deep necrosis dermal or full thickness burns comprising a total body surface area of greater than or eq 30%]

948.30 - 948.99 Burn [any degree] 30 to 90 percent or more of body surface [deep dermal or full thicknes comprising a total body surface area of greater than or equal to 30%]

Experimental and investigational wound care treatments:

Adherus Dural Sealant, Allopatch, AlloSource cryopreserved human cadaver skin, AmnioCare, AmnioExCel, AmnioMTM, AmnioShield, Amniox (human embryonic membrane), Biostat Biologx Fibrin Sealant, PTFE felt, Biot Reinforcement Matrix, CellerateRX, CollaFix, Connexa reconstruction tissue matrix, CorMatrix Patch, CRXa, DermaMatrix, DuraGen Plus Dural Regeneration Matrix, DuraSeal, Durepair Regeneration Matrix, Endoform, ENDURAgeN, EPIFLO transdermal continuous oxygen therapy, Epidex, E-Z Derm, FlexHD Acellular Dermal Mat FloGraft, GORE BIO-A Fistula Plug, HydroFix, Inforce, LiquidGen, Matriderm, MediHoney, Medeor, Neo 1K, Me BioMatrix, Neox 100, Neuroflex, NeuroForm Dermis, NuCel liquid wound covering, NuShield, NuShield Orthopae NuShield Spine, OsseoGuard, Ovation, PalinGen membrane for wound healing, Peri-Guard Repair Patch, Peri-S

AlloMax:

HCPCS codes not covered for indications listed in the CPB:

C1781 Mesh (implantable)

AlloSkin:

HCPCS codes not covered for indications listed in the CPB:

Q4115 AlloSkin, per square centimeter
Q4141 Alloskin ac, per square centimeter

AlloSkin RT:

HCPCS codes not covered for indications listed in the CPB:

Q4123 AlloSkin RT, per square centimeter

Amniomatrix:

HCPCS codes not covered for indications listed in the CPB:

Artelon (poly[urethane urea] elastomer):

No specific code

HCPCS codes not covered for indications listed in the CPB:

L8658 Interphalangeal joint spacer, silicone or equal, each

ICD-9 codes not covered for indications listed in the CPB (not all inclusive):

715.14, 715.24, 715.34 Localized osteoarthrosis, primary, secondary, unspecified [trapezio-metacarpal joint osteoarthritis]
717.83 Old disruption of anterior cruciate ligament
726.10 Disorders of bursae and tendons in shoulder region, unspecified
727.61 Complete rupture of rotator cuff
840.4 Sprain and strain of rotator cuff (capsule)
844.2 Sprain and strain of cruciate ligament of knee

Amniotic Fluid Injection (e.g., AmniFix™):

No specific code
CPT codes not covered for indications listed in the CPB:

20005 - 29999 Musculoskeletal system [not covered for prevention of adhesions after orthopedic surger

ICD-9 codes not covered for indications listing in the CPB (not all inclusive):

371.82 Corneal disorder due to contact lens [corneal wound]
871.9 Unspecified open wound of eyeball [corneal wound]
918.1 Superficial injury of cornea [corneal wound]

Arthres GraftRope:

No specific code

Other CPT codes related to the CPB:

29806 - 29828 Arthroscopy, shoulder, surgical

ICD-9 codes not covered for indications listed in the CPB (not all inclusive):

718.81 Other joint derangement, NEC, involving shoulder region
831.04 Closed dislocation of acromioclavicular (joint)
831.14 Open dislocation of acromioclavicular (joint)

Arthroflex:

HCPCS codes not covered for indications listed in the CPB:

Q4125 Arthroflex, per square centimeter

Autologous Fat:

CPT not covered for indications listed in the CPB:

11950 - 11954 Subcutaenous injection of filling material (e.g., collagen)
15770 Graft; derma-fat-fascia
15877 Suction assisted lipectomy; trunk
20926 Tissue grafts, other (eg, paratenon, fat, dermis)

ICD-9 codes not covered for indications listing in the CPB (not all inclusive):

701.4 Keloid scar
709.2 Scar conditions and fibrosis of skin

Autologous platelet-rich plasma, autologous platelet gel, and autologous platelet-derived growth factors Autogel, Procuren, and Safeblood):

CPT not covered for indications listed in the CPB:
Injection(s), platelet rich plasma, any tissue, including image guidance, harvesting and preparation when performed

HCPCS codes not covered for indications listed in the CPB:

S9055 Procuren or other growth factor preparation to promote wound healing

Axogen Nerve Wrap:

No specific code

Other CPT codes related to the CPB:

64910 Nerve repair; with synthetic conduit or vein allograft (eg, nerve tube), each nerve

Avotermín:

No specific code

Other CPT codes related to the CPB:

96372 Therapeutic, prophylactic, or diagnostic injection (specify substance or drug); subcutaneous intramuscular

ICD-9 codes not covered for indications listing in the CPB (not all inclusive):

709.2 Scar conditions and fibrosis of skin

BioDfactor:

No specific code

HCPCS codes not covered for indications listed in the CPB:

Q4137 Amnioexcel or biodexcel, per square centimeter
Q4138 Biodfence dryflex, per square centimeter
Q4139 Amniomatrix or biodmatrix, injectable, 1 cc
Q4140 Biodfence, per square centimeter

C-Qur biosynthetic mesh:

HCPCS codes not covered for indications listed in the CPB:

Q4100 Skin substitute, not otherwise specified

HCPCS codes not covered for indications listed in the CPB:

Q4112 Cymetra, injectable, 1 cc [for vocal cord paralysis - see CPB 253]

Dermacell:

HCPCS codes not covered for indications listed in the CPB:

Q4122 Dermacell, per square centimeter
DermaClose RC Continuous External Tissue Expander:
No specific code

CPT codes not covered for indications listed in the CPB:
11960 Insertion of tissue expander(s) for other than breast, including subsequent expansion

DermaSpan:

HCPCS codes not covered for indications listed in the CPB:
Q4126 MemoDerm, DermaSpan, TranZgraff or InteguPly, per square centimeter

DryFlex:

HCPCS codes not covered for indications listed in the CPB:
Q4138 Biodfence dryflex, per square centimeter

EpiFix:

HCPCS codes not covered for indications listed in the CPB:
Q4131 EpiFix, per sq cm
Q4145 Epifix, injectable, 1 mg

Equine-derived decellularized collagen products (eg, OrthADAPT™ and Unite™):

HCPCS codes not covered for indications listed in the CPB:
Q4100 Skin substitute, not otherwise specified
Q4147 Architect extracellular matrix, per square centimeter

Evical Fibrin Sealant:
No specific code

ICD-9 codes not covered for indications listed in the CPB:
349.81 Cerebrospinal fluid rhinorrhea
388.61 Cerebrospinal fluid otorrhea

Gammagraft Skin Substitute:

HCPCS codes not covered for indications listed in the CPB:
Q4111 GammaGraft, per sq cm

Grafix Core:

HCPCS codes not covered for indications listed in the CPB:
Q4132 Grafix Core, per square centimeter
Grafix Prime:

HCPCS codes not covered for indications listed in the CPB:

Q4133 Grafix Prime, per square centimeter

Graftjacket Express Injectable Allograft:

HCPCS codes not covered for indications listed in the CPB:

Q4113 Graftjacket Xpress, injectable, 1 cc

hMatrix:

HCPCS codes not covered for indications listed in the CPB:

Q4134 hMatrix, per square centimeter

Hyalomatrix:

HCPCS codes not covered for indications listed in the CPB:

Q4117 Hyalomatrix, per sq cm

Integra Neural Wrap, NeuroMatrix Collagen Nerve Cuff, and NeuroMend Collagen Nerve Wrap:

CPT codes not covered for indications listed in the CPB:

64910 Nerve repair; with synthetic conduit or vein allograft (eg, nerve tube), each nerve

HCPCS codes not covered for indications listed in the CPB:

C9355 Collagen nerve cuff (NeuroMatrix), per 0.5 centimeter length

C9361 Collagen matrix nerve wrap (NeuroMend Collagen Nerve Wrap), per 0.5 centimeter length

Integra Matrix Wound Dressing and Flowable Wound Matrix:

CPT codes not covered for indications listed in the CPB (not all-inclusive):

10040 - 19499 Surgery, integumentary system

HCPCS codes not covered for indications listed in the CPB:

Q4108 Integra Matrix, per sq cm

Q4114 Integra Flowable Wound Matrix, injectable, 1 cc

MariStem wound micromatrix powder:

HCPCS codes not covered for indications listed in the CPB:

Q4119 Maristem wound matrix, per sq cm

MemoDerm:

HCPCS codes not covered for indications listed in the CPB:
Q4126 MemoDerm, DermaSpan, TranZgraft or InteguPly, per square centimeter

Menaflex Collagen Meniscus Implant:

HCPCS codes not covered for indications listed in the CPB:

G0428 Collagen meniscus implant procedure for filling meniscal defects (e.g., CMI, collagen sca Menaflex)

NeuraGen:

HCPCS codes not covered for indication listed in the CPB:

C9352 Microporous collagen implantable tube (NeuraGen Nerve Guide), per cm length

NeuraWrap:

HCPCS codes not covered for indication listed in the CPB:

C9353 Microporous collagen implantable slit tube (NeuraWrap Nerve Protector), per cm length

OrthADAPT Bioimplant (type I collagen scaffold):

No specific code

HCPCS codes not covered for indication listed in the CPB:

Q4100 Skin substitute, not otherwise specified

Oasis Burn Matrix:

HCPCS codes not covered for indications listed in the CPB:

Q4103 Oasis Burn Matrix, per sq cm

ICD-9 codes not covered for indications listed in the CPB (not all inclusive):

941.00 - 949.5 Burns

Oasis Tri-Layer Matrix:

HCPCS codes not covered for the indications listed in the CPB:

Q4124 Oasis ultra tri-layer wound matrix, per sq cm

Parietex™Composite (PCO) Mesh:

HCPCS codes not covered for the indications listed in the CPB:

C1781 Mesh (implantable)

ICD-9 codes not covered for indications listing in the CPB (not all inclusive):

618.00 - 618.9 Genital prolapse

Permacol Biologic Implant:
CPT codes not covered for indications listed in the CPB:

Too many to list.

HCPCS codes not covered for indications listed in the CPB:

C9364 Porcine implant, Permacol, per square centimeter

ICD-9 codes not covered for indications listed in the CPB:

560.0 Intussusception [rectum]
569.1 Rectal prolapse
618.04 Rectocele

Porcine derived decellularized collagen products:

No specific codes for Collamend, Cuffpatch, Pevlico and Pelvisoft

HCPCS codes not covered for indications listed in the CPB:

Q4130 Strattice TM, per sq cm

Porcine-derived decellularized fetal skin products (eg, Mediskin™):

HCPCS codes not covered for indications listed in the CPB:

Q4135 Mediskin, per sq cm
Q4142 Xcm biologic tissue matrix, per square centimeter

Primatrix acellular dermal tissue matrix:

HCPCS codes not covered for indications listed in the CPB:

Q4110 Primatrix, per sq cm

Radiofrequency stimulation:

CPT codes not covered for indications listed in the CPB:

97032 Application of a modality to one or more areas; electrical stimulation, (manual), each 15

HCPCS codes not covered for indications listed in the CPB:

G0281 Electrical stimulation, (unattended), to one or more areas, for chronic Stage III and Stage pressure ulcers, arterial ulcers, diabetic ulcers, and venous stasis ulcers not demonstrat measurable signs of healing after 30 days of conventional care, as part of a therapy plan care [if billed for Provant or MicroVas]

G0282 Electrical stimulation, (unattended), to one or more areas, for wound care other than des in G0281 [if billed for Provant or MicroVas]

Silver coated wound dressings (Acticoat, Actisorb):

HCPCS codes not covered for indications listed in the CPB:
A6196 Alginate or other fiber gelling dressing, wound cover, sterile, pad size 16 sq. in. or less, each dressing

A6199 Alginate or other fiber gelling dressing, wound filler, sterile, per 6 in.

A6206 Contact layer, sterile, 16 sq. in. or less, each dressing

A6207 Contact layer, sterile, more than 16 sq. in. but less than or equal to 48 sq. in, each dressing

A6208 Contact layer, sterile, more than 48 sq. in., each dressing

A6209 Foam dressing, wound cover, sterile, pad size 16 sq. in. or less, without adhesive border dressing

A6210 Foam dressing, wound cover, sterile, pad size more than 16 sq. in. but less than or equal to 48 sq. in., without adhesive border, each dressing

A6211 Foam dressing, wound cover, sterile, pad size more than 48 sq. in. without adhesive border, each dressing

Strattice Tissue Matrix:

HCPCS codes not covered for indications listed in the CPB:

Q4130 Strattice™, per sq cm

SurgiMend:

CPT codes not covered for indications listed in the CPB:

Too many to list

HCPCS codes not covered for indications listed in the CPB:

C9358 Dermal substitute, native, non-denatured collagen (SurgiMend Collagen Matrix), per 0.5 centimeters

C9360 Dermal substitute, native, non-denatured collagen, neonatal bovine origin (SurgiMend C Matrix), per 0.5 square centimeters

Talymed:

HCPCS codes not covered for indications listed in the CPB:

Q4127 Talymed, per square centimeter

TenoGlide Tendon Protector Sheet:

CPT codes not covered for indications listed in the CPB (not all-inclusive):

20924 Tendon graft

23405 - 23406, 24300 - 24342, 25260 - 25316, 26350 - 26502, 26510, 27097 Repair, revision, and/or reconstruction, tendon
HCPCS codes not covered for indications listed in the CPB:

C9356 Tendon, porous matrix of cross-linked collagen and glycosaminoglycan matrix (Tenoglid Tendon Protector Sheet), per square centimeter

ICD-9 codes not covered for indications listed in the CPB (not all inclusive):

950.0 - 957.9 Injury to nerves and spinal cord

TheraSkin:

HCPCS codes not covered for indications listed in the CPB:

Q4121 Theraskin, per square centimeter

Unite Biomatrix:

HCPCS codes not covered for indications listed in the CPB:

Q4129 Unite Biomatrix, per square centimeter

Veritas Collagen Matrix:

HCPCS codes not covered for indications listed in the CPB:

C9354 Acellular pericardial tissue matrix of nonhuman origin (Veritas), per sq cm

XenMatrix:

HCPCS codes not covered for indications listed in the CPB:

C1781 Mesh (implantable)

The above policy is based on the following references:

General References

20. Canadian Agency for Drugs and Technologies in Health. Non-adherent versus traditional dressings for wou Comparative effectiveness, safety, and guidelines. Ottawa, ON: Canadian Agency for Drugs and Technolog Health (CADTH); 2011.

Procuren

Apligraf

Graftskin

Silver-Coated Wound Dressings (e.g., Acticoat, Actisorb)

Dermagraft

TransCyte

http://qawww.aetna.com/cpb/medical/data/200_299/0244_draft.html

01/28/2015
5. Amani H, Dougherty WR, Blome-Eberwein S. Use of Transcyte® and dermabrasion to treat burns reduc
7. Tenenhaus M, Bhavsar D, Rennekampff HO. Treatment of deep partial thickness and indeterminate depth fl

Orcel

2. Lipkin S, Chaikof E, Isseroff Z, Silverstein P. Effectiveness of OrCel™ (bilayered cellular matrix) in healing o

MicroVas Vascular Treatment System

Provant Wound Closure System

4. Olyaee Manesh A, Flemming K, Cullum NA, Ravaghi H. Electromagnetic therapy for treating pressure ulcer
5. Ravaghi H, Flemming K, Cullum NA, Olyaee Manesh A. Electromagnetic therapy for treating venous leg ulc
2007.
7. Conner-Kerr T, Isenberg RA. Retrospective analysis of pulsed radiofrequency energy therapy use in the tre

Graftjacket Regenerative Tissue Matrix and Graftjacket Xpress

Platelet-Rich Plasma

Platelet Gel

PriMatrix Acellular Dermal Tissue Matrix

Oasis Wound Dressing and Oasis Burn Matrix

Epicel Cultured Epidermal Autograft

Biobrane Biosynthetic Dressing

Alloderm

35. Lydiatt WM, Quivey JM. Salivary gland tumors: Treatment of locoregional disease. Last reviewed November 18, 2013. UpToDate Inc. Waltham, MA.

Cymetra

Gore Bio-A Fistula Plug

E-Z Derm

Integra (Collagen-Glycosaminoglycan Copolymer)

TissueMend

Veritas Collagen Matrix

NeuroMatrix Collagen Nerve Cuff and NeuroMend Collagen Nerve Wrap

TenoGlide

SurgiMend

Gammagraft

Artiss

Artelon

TheraSkin

7. Lin Q, Rosines E, Taylor BM, Clagett J. TheraSkin analysis, stage 1 findings: Identification of key growth factor cytokines and collagen in TheraSkin. Study conducted at Albany Medical Center and the University of Maryland Institute of Human Virology through funding from Skin and Wound Allograft Institute, A Subsidiary of Lifenet Scientific Data Series SDS 20-00. Newport News, VA: Soluble Systems; revised April 22, 2011.

FlexHD

Hyalomatrix (hMatrix)

http://qawww.aetna.com/cpb/medical/data/200_299/0244_draft.html

Epifix

Amniotic Fluid Injection

BioDfactor Human Amnion Allograft

DermaClose

Talymed

Fibrin Sealant for Breast Reconstruction

Pariette Composite (PCO) Mesh

Pelvicol

Pelvisoft

Avaulta

CollaMend

Strattice

Vitagel

Evicel

Endoform

Enduragen

Epidex

Neoform

MatriStem

Medihoney

Duragen

Alloskin

Axogen

GraftRope

Avotermín

CellerateRx

Suprathel

Miscellaneous

EPIFLO Transdermal Continuous Oxygen Therapy [TCOT] for Wound Healing

6. Armstrong DG, Meyr AJ. Basic principles of wound management. Last reviewed November 2013. UpToDate Waltham, MA.